Model deployment#
One of the main goals of PyMC-Marketing is to facilitate the deployment of its models.
This is achieved by building our models on top of ModelBuilder that offers a scikit-learn-like API and makes PyMC models easy to deploy.
PyMC-marketing models inherit 2 easy-to-use methods: save
and load
that can be used after the model has been fitted. All models can be configured with two standard dictionaries: model_config
and sampler_config
that are serialized during save
and persisted after load
, allowing model reuse across workflows.
We will illustrate this functionality with the example model described in the MMM Example Notebook. For sake of generality, we ommit most technical details here.
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from pymc_marketing.mmm import MMM, GeometricAdstock, LogisticSaturation
from pymc_marketing.prior import Prior
az.style.use("arviz-darkgrid")
plt.rcParams["figure.figsize"] = [12, 7]
plt.rcParams["figure.dpi"] = 100
%config InlineBackend.figure_format = "retina"
seed = sum(map(ord, "mmm"))
rng = np.random.default_rng(seed=seed)
Let’s load the dataset:
url = "https://raw.githubusercontent.com/pymc-labs/pymc-marketing/main/data/mmm_example.csv"
df = pd.read_csv(url, parse_dates=["date_week"])
columns_to_keep = [
"date_week",
"y",
"x1",
"x2",
"event_1",
"event_2",
"dayofyear",
]
data = df[columns_to_keep].copy()
data["t"] = np.arange(df.shape[0])
data.head()
date_week | y | x1 | x2 | event_1 | event_2 | dayofyear | t | |
---|---|---|---|---|---|---|---|---|
0 | 2018-04-02 | 3984.662237 | 0.318580 | 0.0 | 0.0 | 0.0 | 92 | 0 |
1 | 2018-04-09 | 3762.871794 | 0.112388 | 0.0 | 0.0 | 0.0 | 99 | 1 |
2 | 2018-04-16 | 4466.967388 | 0.292400 | 0.0 | 0.0 | 0.0 | 106 | 2 |
3 | 2018-04-23 | 3864.219373 | 0.071399 | 0.0 | 0.0 | 0.0 | 113 | 3 |
4 | 2018-04-30 | 4441.625278 | 0.386745 | 0.0 | 0.0 | 0.0 | 120 | 4 |
But for our model we need much smaller dataset, many of the previous features were contributing to generation of others, now as our target variable is computed we can filter out not needed columns:
Model and sampling configuration#
Model configuration#
We first illustrate the use of model_config
to define custom priors within the model.
Because there are potentially many variables that can be configured, each model provides a default_model_config
attribute. This will allow you to see which settings are available by default and only define the ones you need to change.
We need to create a dummy model to be able to see the configuration dictionary.
adstock = GeometricAdstock(l_max=8)
saturation = LogisticSaturation()
dummy_model = MMM(
date_column="date_week",
channel_columns=["x1", "x2"],
adstock=adstock,
saturation=saturation,
control_columns=[
"event_1",
"event_2",
"t",
],
yearly_seasonality=2,
)
dummy_model.default_model_config
{'intercept': Prior("Normal", mu=0, sigma=2),
'likelihood': Prior("Normal", sigma=Prior("HalfNormal", sigma=2)),
'gamma_control': Prior("Normal", mu=0, sigma=2, dims="control"),
'gamma_fourier': Prior("Laplace", mu=0, b=1, dims="fourier_mode"),
'adstock_alpha': Prior("Beta", alpha=1, beta=3, dims="channel"),
'saturation_lam': Prior("Gamma", alpha=3, beta=1, dims="channel"),
'saturation_beta': Prior("HalfNormal", sigma=2, dims="channel")}
We can change the parameters that go into the distribution of each term.
In this case we’ll just simply replace the sigma
for beta_channel
with a custom one:
n_channels = 2
total_spend_per_channel = data[["x1", "x2"]].sum(axis=0)
spend_share = total_spend_per_channel / total_spend_per_channel.sum()
# The scale necessary to make a HalfNormal distribution have unit variance
HALFNORMAL_SCALE = 1 / np.sqrt(1 - 2 / np.pi)
prior_sigma = HALFNORMAL_SCALE * n_channels * spend_share.to_numpy()
prior_sigma
array([2.1775326 , 1.14026088])
beta_channel = Prior("HalfNormal", sigma=prior_sigma, dims="channel")
my_model_config = {"beta_channel": beta_channel}
my_model_config
{'beta_channel': Prior("HalfNormal", sigma=[2.1775326 1.14026088], dims="channel")}
As mentioned in the original notebook: “For the prior specification there is no right or wrong answer. It all depends on the data, the context and the assumptions you are willing to make. It is always recommended to do some prior predictive sampling and sensitivity analysis to check the impact of the priors on the posterior. We skip this here for the sake of simplicity. If you are not sure about specific priors, the MMM
class has some default priors that you can use as a starting point.”
Sampling configuration#
The second feature we can customize is sampler_config
. Similar to model_config
, it’s a dictionary that gets saved and contains things you would usually pass to the fit()
kwargs. It’s not mandatory to create your own sampler_config
. The default MMM.sampler_config
is empty because the default sampling parameters usually prove sufficient for a start.
dummy_model.default_sampler_config
{}
my_sampler_config = {
"tune": 1000,
"draws": 1000,
"chains": 4,
"target_accept": 0.91,
"nuts_sampler": "numpyro",
}
Let’s finally assemble our model!
mmm = MMM(
model_config=my_model_config,
sampler_config=my_sampler_config,
date_column="date_week",
channel_columns=["x1", "x2"],
adstock=adstock,
saturation=saturation,
control_columns=[
"event_1",
"event_2",
"t",
],
yearly_seasonality=2,
)
We can confirm our settings are being used
mmm.model_config["beta_channel"]
Prior("HalfNormal", sigma=[2.1775326 1.14026088], dims="channel")
mmm.sampler_config
{'tune': 1000,
'draws': 1000,
'chains': 4,
'target_accept': 0.91,
'nuts_sampler': 'numpyro'}
Model Fitting#
Note that we didn’t pass the dataset to the class constructor itself. This is done to mimick the scikit-learn
API, and make it easier to get started on PyMC-Marketing models.
# Split X, and y
X = data.drop("y", axis=1)
y = data["y"]
All that’s left now is to finally fit the model:
As you can see below, you can still pass the sampler kwargs directly to fit()
method. However, only those kwargs passed using sampler_config
will be saved and reused after loading the model.
mmm.fit(X=X, y=y, random_seed=rng)
An NVIDIA GPU may be present on this machine, but a CUDA-enabled jaxlib is not installed. Falling back to cpu.
-
- chain: 4
- draw: 1000
- channel: 2
- date: 179
- control: 3
- fourier_mode: 4
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- adstock_alpha(chain, draw, channel)float640.4349 0.1629 ... 0.3867 0.2086
array([[[0.43491453, 0.16292992], [0.40112947, 0.20420502], [0.42446559, 0.19954726], ..., [0.37689874, 0.24297159], [0.37665774, 0.20424557], [0.37951398, 0.15094672]], [[0.41808369, 0.21122023], [0.43898999, 0.20736866], [0.41671688, 0.20922167], ..., [0.33892555, 0.24830247], [0.41939912, 0.19009995], [0.37005099, 0.21032969]], [[0.35190402, 0.2462561 ], [0.37889626, 0.24075485], [0.40447585, 0.17682787], ..., [0.34892833, 0.24371807], [0.43291056, 0.1981904 ], [0.4187749 , 0.21320506]], [[0.40091392, 0.23054468], [0.41691216, 0.17963179], [0.402189 , 0.20205079], ..., [0.40920684, 0.10423079], [0.36769927, 0.17113931], [0.38667718, 0.20863382]]])
- channel_contributions(chain, draw, date, channel)float640.1279 0.0 ... 0.1997 0.002296
array([[[[0.12786817, 0. ], [0.10237041, 0. ], [0.15726894, 0. ], ..., [0.1073587 , 0.04988715], [0.15495974, 0.00826432], [0.2205483 , 0.00134694]], [[0.12762204, 0. ], [0.09769695, 0. ], [0.15311628, 0. ], ..., [0.10282297, 0.04886792], [0.15063707, 0.01007515], [0.21861648, 0.00205746]], [[0.11625866, 0. ], [0.09143201, 0. ], [0.14272329, 0. ], ..., ... ..., [0.10470383, 0.04984428], [0.15135154, 0.00530235], [0.21406407, 0.00055279]], [[0.1268097 , 0. ], [0.0932716 , 0. ], [0.14750014, 0. ], ..., [0.0988701 , 0.05201288], [0.14511097, 0.00905196], [0.20918822, 0.00154968]], [[0.11814408, 0. ], [0.08884605, 0. ], [0.13991741, 0. ], ..., [0.0937566 , 0.05204498], [0.13763149, 0.01100237], [0.19965067, 0.00229584]]]])
- control_contributions(chain, draw, date, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.1118
array([[[[0. , 0. , 0. ], [0. , 0. , 0.00062697], [0. , 0. , 0.00125393], ..., [0. , 0. , 0.11034619], [0. , 0. , 0.11097315], [0. , 0. , 0.11160012]], [[0. , 0. , 0. ], [0. , 0. , 0.00060661], [0. , 0. , 0.00121321], ..., [0. , 0. , 0.10676269], [0. , 0. , 0.1073693 ], [0. , 0. , 0.10797591]], [[0. , 0. , 0. ], [0. , 0. , 0.00060406], [0. , 0. , 0.00120812], ..., ... ..., [0. , 0. , 0.10643784], [0. , 0. , 0.1070426 ], [0. , 0. , 0.10764736]], [[0. , 0. , 0. ], [0. , 0. , 0.00065939], [0. , 0. , 0.00131877], ..., [0. , 0. , 0.11605176], [0. , 0. , 0.11671115], [0. , 0. , 0.11737053]], [[0. , 0. , 0. ], [0. , 0. , 0.00062804], [0. , 0. , 0.00125609], ..., [0. , 0. , 0.11053563], [0. , 0. , 0.11116367], [0. , 0. , 0.11179172]]]])
- fourier_contributions(chain, draw, date, fourier_mode)float640.004798 0.001431 ... -0.001943
array([[[[ 4.79774496e-03, 1.43110703e-03, -7.57183712e-04, 4.45929933e-03], [ 4.75618628e-03, 1.58178348e-02, -8.44217759e-03, 4.30543888e-03], [ 4.64574505e-03, 2.92915389e-02, -1.60049057e-02, 3.90306356e-03], ..., [-3.37630060e-03, -6.05058078e-02, -4.54906625e-02, -4.31618665e-05], [-3.76137780e-03, -5.88992202e-02, -3.97492458e-02, 1.02193188e-03], [-4.09197889e-03, -5.38929121e-02, -3.34321704e-02, 2.02803539e-03]], [[-1.41459489e-03, 1.34471770e-03, -7.07320981e-04, -3.96380610e-03], [-1.40234149e-03, 1.48629850e-02, -7.88623585e-03, -3.82704179e-03], [-1.36977836e-03, 2.75233438e-02, -1.49509365e-02, -3.46937624e-03], ... [-4.78102064e-03, -5.42920571e-02, -4.65525421e-02, -1.61313183e-05], [-5.32631036e-03, -5.28504609e-02, -4.06771046e-02, 3.81936876e-04], [-5.79445903e-03, -4.83582844e-02, -3.42125710e-02, 7.57958055e-04]], [[ 6.06300411e-03, 1.27013735e-03, -7.63274949e-04, -4.27169031e-03], [ 6.01048558e-03, 1.40386584e-02, -8.51009150e-03, -4.12430299e-03], [ 5.87091885e-03, 2.59968520e-02, -1.61336587e-02, -3.73885617e-03], ..., [-4.26669708e-03, -5.37001669e-02, -4.58566165e-02, 4.13459858e-05], [-4.75332666e-03, -5.22742869e-02, -4.00690124e-02, -9.78937763e-04], [-5.17111372e-03, -4.78310840e-02, -3.37011187e-02, -1.94271308e-03]]]])
- gamma_control(chain, draw, control)float640.2521 0.299 ... 0.3397 0.000628
array([[[0.25213312, 0.2989991 , 0.00062697], [0.23372642, 0.3056338 , 0.00060661], [0.23732665, 0.29886166, 0.00060406], ..., [0.22804442, 0.36173823, 0.00062819], [0.19150706, 0.38279107, 0.00057938], [0.28876443, 0.27547333, 0.00059507]], [[0.23214881, 0.26496017, 0.00059146], [0.21659654, 0.25448427, 0.0007759 ], [0.20863317, 0.26455187, 0.00056028], ..., [0.26285821, 0.30468479, 0.00067413], [0.26698958, 0.2874097 , 0.00061238], [0.24619481, 0.39513223, 0.00065064]], [[0.19514857, 0.33792974, 0.00058735], [0.29266963, 0.34899422, 0.00054109], [0.22190299, 0.30638963, 0.00064604], ..., [0.1876274 , 0.38323342, 0.00058825], [0.2941488 , 0.29601567, 0.00060884], [0.28938611, 0.32113872, 0.00065385]], [[0.24924791, 0.34535736, 0.0006621 ], [0.20106594, 0.32419433, 0.00055556], [0.20767738, 0.30012083, 0.00063615], ..., [0.27876565, 0.27172377, 0.00060476], [0.24385579, 0.34741107, 0.00065939], [0.24869219, 0.33974399, 0.00062804]]])
- gamma_fourier(chain, draw, fourier_mode)float640.004798 -0.06051 ... 0.004273
array([[[ 0.00479808, -0.06050864, 0.0640245 , -0.00446055], [-0.00141469, -0.05685601, 0.0598083 , 0.00396492], [ 0.00217156, -0.05051466, 0.05624161, 0.0028631 ], ..., [ 0.00850373, -0.0595431 , 0.05699714, 0.00165331], [ 0.00419424, -0.05573242, 0.06551116, 0.00573148], [ 0.00962834, -0.05838413, 0.06149928, 0.00060337]], [[ 0.0012791 , -0.05674273, 0.06681569, -0.00208387], [-0.00126885, -0.06664473, 0.06567002, 0.00145345], [ 0.00177667, -0.06163274, 0.06676791, 0.00177583], ..., [ 0.00484937, -0.05624146, 0.06182268, 0.00319376], [ 0.00998234, -0.0480922 , 0.06346699, 0.00331239], [-0.0033222 , -0.06705298, 0.06248041, 0.00165701]], [[ 0.00454857, -0.0542172 , 0.05947344, 0.00664475], [ 0.00876148, -0.05713653, 0.06678687, 0.00118017], [-0.0019831 , -0.0567738 , 0.05904132, 0.00428764], ..., [ 0.00740584, -0.05257177, 0.05782493, 0.00469463], [ 0.0004801 , -0.06087393, 0.06560057, 0.00167565], [ 0.0079182 , -0.05545607, 0.06555048, -0.0002396 ]], [[ 0.00386162, -0.06013293, 0.06254302, 0.00112875], [ 0.00054344, -0.05573833, 0.06214554, -0.00019137], [ 0.0012377 , -0.05528381, 0.06132686, -0.00064992], ..., [ 0.00203021, -0.05730508, 0.06081237, 0.00899997], [ 0.00679434, -0.0542946 , 0.06551901, -0.00166709], [ 0.00606343, -0.05370268, 0.06453955, 0.00427289]]])
- intercept(chain, draw)float640.3475 0.3531 ... 0.3615 0.369
array([[0.34746613, 0.35312181, 0.35779892, ..., 0.34922646, 0.36098357, 0.34264298], [0.36140209, 0.34615241, 0.3519514 , ..., 0.35483622, 0.36489464, 0.33480966], [0.35715413, 0.37103469, 0.32834264, ..., 0.34407002, 0.35134761, 0.33704257], [0.33027724, 0.34706866, 0.34793088, ..., 0.36032494, 0.36152326, 0.36899174]])
- mu(chain, draw, date)float640.4853 0.4669 ... 0.5307 0.5941
array([[[0.48526527, 0.46690079, 0.52782445, ..., 0.50564224, 0.52027543, 0.59157247], [0.47600285, 0.45317273, 0.51518455, ..., 0.51326092, 0.52892859, 0.59930525], [0.47389628, 0.45501338, 0.51172191, ..., 0.52317055, 0.5298895 , 0.59507911], ..., [0.49344413, 0.46721152, 0.53097196, ..., 0.5244273 , 0.53215255, 0.594024 ], [0.49255739, 0.46521172, 0.52654547, ..., 0.51084556, 0.52629969, 0.59216943], [0.49521283, 0.46669594, 0.53251928, ..., 0.49863371, 0.51683303, 0.58910737]], [[0.49120495, 0.46984941, 0.52944248, ..., 0.50169106, 0.52750761, 0.59973636], [0.46104364, 0.44665261, 0.50605614, ..., 0.50801533, 0.52955282, 0.59956342], [0.48762126, 0.46550376, 0.5300494 , ..., 0.49332605, 0.51785434, 0.59235221], ... [0.49744869, 0.46266126, 0.52982233, ..., 0.52040464, 0.53586048, 0.6003944 ], [0.47600818, 0.45800735, 0.5184772 , ..., 0.50438318, 0.5197213 , 0.58838147], [0.4819161 , 0.45897165, 0.52108348, ..., 0.51144645, 0.52565466, 0.59314441]], [[0.47592671, 0.45070281, 0.51727869, ..., 0.51326563, 0.52741736, 0.59751087], [0.48812601, 0.46459603, 0.52880863, ..., 0.50832446, 0.52696676, 0.5985003 ], [0.48566414, 0.46111132, 0.52375703, ..., 0.51998483, 0.5369565 , 0.60630523], ..., [0.48212183, 0.46091238, 0.52186746, ..., 0.51945858, 0.52683206, 0.5939713 ], [0.49730272, 0.46935252, 0.52828441, ..., 0.52281625, 0.5339254 , 0.60202434], [0.48943399, 0.46588058, 0.52216049, ..., 0.52154682, 0.53071371, 0.59408394]]])
- saturation_beta(chain, draw, channel)float640.3636 0.2229 ... 0.36 0.2582
array([[[0.3635677 , 0.22285995], [0.39792924, 0.28395112], [0.39428451, 0.25469264], ..., [0.33458502, 0.25693458], [0.34308289, 0.2844981 ], [0.36083963, 0.22760342]], [[0.37889897, 0.3945551 ], [0.37865529, 0.36809264], [0.39170561, 0.40473342], ..., [0.3519309 , 0.26482416], [0.35615163, 0.29017406], [0.36872576, 0.25538924]], [[0.34583895, 0.26855338], [0.33932437, 0.34044514], [0.37970693, 0.216313 ], ..., [0.34150619, 0.30044084], [0.36211826, 0.26521304], [0.35017232, 0.253288 ]], [[0.37484335, 0.23499439], [0.36120914, 0.24932466], [0.35837625, 0.23801221], ..., [0.3387533 , 0.20309728], [0.36037638, 0.23101931], [0.35996453, 0.25824801]]])
- saturation_lam(chain, draw, channel)float644.063 3.845 3.471 ... 3.475 2.85
array([[[4.06266341, 3.84548752], [3.47098299, 2.46312441], [3.30013266, 3.16423052], ..., [4.35271519, 3.10134575], [4.08926128, 2.43134246], [4.22223859, 3.74694864]], [[3.70984694, 1.32962529], [3.55154563, 1.5072354 ], [3.85132351, 1.4547802 ], ..., [3.73120317, 2.86441501], [3.79553188, 2.2234866 ], [4.27958807, 2.78339513]], [[4.04407399, 2.81565209], [4.01450181, 1.96046944], [4.23534831, 4.00426959], ..., [4.53177141, 2.33367313], [3.97343356, 2.70104654], [4.41480755, 2.99085799]], [[4.16873188, 3.30216222], [4.37524809, 3.07803073], [4.15296093, 3.05496657], ..., [4.21173571, 6.18105705], [3.63623289, 3.71930652], [3.47518602, 2.84955306]]])
- y_sigma(chain, draw)float640.03005 0.02756 ... 0.02974 0.02986
array([[0.03004884, 0.02756202, 0.03039778, ..., 0.0275736 , 0.03067354, 0.02935603], [0.03031903, 0.02944373, 0.03019217, ..., 0.02883972, 0.02841733, 0.03029156], [0.03306883, 0.02971561, 0.03097913, ..., 0.03010724, 0.0283991 , 0.02781049], [0.02876188, 0.02757842, 0.02722469, ..., 0.02850164, 0.02974464, 0.02985767]])
- yearly_seasonality_contribution(chain, draw, date)float640.009931 0.01644 ... -0.08865
array([[[ 0.00993097, 0.01643728, 0.02183544, ..., -0.10941593, -0.10138791, -0.08938903], [-0.004741 , 0.00174737, 0.00773325, ..., -0.09831447, -0.09227474, -0.0824664 ], [-0.0001613 , 0.00517838, 0.00999158, ..., -0.09197344, -0.08644666, -0.07751347], ..., [ 0.00758449, 0.01488354, 0.021363 , ..., -0.10600579, -0.10039086, -0.09079957], [-0.00099255, 0.0045565 , 0.00964881, ..., -0.10517272, -0.09952339, -0.09003026], [ 0.009678 , 0.01611513, 0.02168412, ..., -0.10884724, -0.10269891, -0.09259997]], [[ 0.00391414, 0.00930249, 0.01382777, ..., -0.10513418, -0.09724093, -0.08557183], [-0.00192222, 0.00610206, 0.01334533, ..., -0.11239451, -0.10498125, -0.09322823], [ 0.00066928, 0.00735485, 0.01331138, ..., -0.11030279, -0.10324555, -0.09208144], ... [ 0.00327153, 0.0089281 , 0.01405707, ..., -0.09882096, -0.09395499, -0.08546916], [-0.00053119, 0.00612186, 0.01206812, ..., -0.1078032 , -0.1007428 , -0.08964472], [ 0.00869356, 0.01393396, 0.01833573, ..., -0.10760255, -0.10083013, -0.09026576]], [[ 0.00341548, 0.01021119, 0.01622644, ..., -0.10727457, -0.10064884, -0.09002339], [ 0.00131803, 0.00709979, 0.01214071, ..., -0.1002756 , -0.09322067, -0.08247164], [ 0.00246961, 0.00821973, 0.01319881, ..., -0.0997324 , -0.09270918, -0.08202293], ..., [-0.00633125, 0.00028721, 0.0066294 , ..., -0.1018523 , -0.09718937, -0.08861785], [ 0.00896976, 0.01389828, 0.01794224, ..., -0.10564175, -0.09847194, -0.08760736], [ 0.00229818, 0.00741475, 0.01199526, ..., -0.10378213, -0.09807556, -0.08864603]]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- fourier_modePandasIndex
PandasIndex(Index(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='object', name='fourier_mode'))
- created_at :
- 2024-07-30T11:52:42.018994+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 63MB Dimensions: (chain: 4, draw: 1000, channel: 2, date: 179, control: 3, fourier_mode: 4) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 ... 997 998 999 * channel (channel) <U2 16B 'x1' 'x2' * date (date) datetime64[ns] 1kB 2018-04-02 ...... * control (control) <U7 84B 'event_1' 'event_2' 't' * fourier_mode (fourier_mode) <U5 80B 'sin_1' ... 'cos_2' Data variables: adstock_alpha (chain, draw, channel) float64 64kB 0.43... channel_contributions (chain, draw, date, channel) float64 11MB ... control_contributions (chain, draw, date, control) float64 17MB ... fourier_contributions (chain, draw, date, fourier_mode) float64 23MB ... gamma_control (chain, draw, control) float64 96kB 0.25... gamma_fourier (chain, draw, fourier_mode) float64 128kB ... intercept (chain, draw) float64 32kB 0.3475 ... 0.369 mu (chain, draw, date) float64 6MB 0.4853 .... saturation_beta (chain, draw, channel) float64 64kB 0.36... saturation_lam (chain, draw, channel) float64 64kB 4.06... y_sigma (chain, draw) float64 32kB 0.03005 ... 0... yearly_seasonality_contribution (chain, draw, date) float64 6MB 0.009931... Attributes: created_at: 2024-07-30T11:52:42.018994+00:00 arviz_version: 0.19.0
xarray.Dataset -
- chain: 4
- draw: 1000
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- acceptance_rate(chain, draw)float640.9973 0.8772 ... 0.897 0.9993
array([[0.99734247, 0.87723435, 0.9118903 , ..., 0.99317618, 0.99997901, 0.56841913], [0.7962355 , 0.9986148 , 0.99931209, ..., 0.97885607, 0.9002364 , 0.90109604], [0.77958441, 0.81676485, 0.98578191, ..., 0.88747137, 0.99663724, 0.9995098 ], [0.84698646, 0.98628525, 0.99944013, ..., 0.96667972, 0.89695131, 0.99929059]])
- diverging(chain, draw)boolFalse False False ... False False
array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]])
- energy(chain, draw)float64-349.6 -347.4 ... -345.7 -352.4
array([[-349.55230473, -347.39727217, -341.15924362, ..., -343.10637412, -348.48724344, -343.62412541], [-339.50159365, -338.18428021, -338.81246594, ..., -347.25520713, -340.6611464 , -342.25387946], [-345.63000006, -342.89885823, -346.5178656 , ..., -342.72005691, -345.90269559, -348.38509117], [-349.30152894, -350.52251623, -349.76422102, ..., -343.27110856, -345.65101347, -352.36628761]])
- lp(chain, draw)float64-356.2 -353.0 ... -355.1 -356.7
array([[-356.19265931, -352.99687239, -351.20975268, ..., -352.8513941 , -354.82449383, -350.16209218], [-348.37123268, -341.8143295 , -348.87370103, ..., -353.14754619, -348.82764216, -350.19404097], [-353.2794217 , -351.436295 , -353.07829697, ..., -351.9501912 , -356.11123392, -354.6587712 ], [-355.64740253, -354.95948322, -356.20454226, ..., -350.47045888, -355.12625108, -356.67699431]])
- n_steps(chain, draw)int64511 511 511 511 ... 511 511 511 511
array([[ 511, 511, 511, ..., 511, 511, 511], [ 511, 511, 1023, ..., 511, 255, 511], [ 511, 511, 511, ..., 511, 511, 511], [1023, 511, 1023, ..., 511, 511, 511]])
- step_size(chain, draw)float640.007235 0.007235 ... 0.005817
array([[0.00723475, 0.00723475, 0.00723475, ..., 0.00723475, 0.00723475, 0.00723475], [0.00690365, 0.00690365, 0.00690365, ..., 0.00690365, 0.00690365, 0.00690365], [0.00645019, 0.00645019, 0.00645019, ..., 0.00645019, 0.00645019, 0.00645019], [0.00581653, 0.00581653, 0.00581653, ..., 0.00581653, 0.00581653, 0.00581653]])
- tree_depth(chain, draw)int649 9 9 9 9 9 9 9 ... 9 9 8 9 9 9 9 9
array([[ 9, 9, 9, ..., 9, 9, 9], [ 9, 9, 10, ..., 9, 8, 9], [ 9, 9, 9, ..., 9, 9, 9], [10, 9, 10, ..., 9, 9, 9]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- created_at :
- 2024-07-30T11:52:42.039028+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 204kB Dimensions: (chain: 4, draw: 1000) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999 Data variables: acceptance_rate (chain, draw) float64 32kB 0.9973 0.8772 ... 0.897 0.9993 diverging (chain, draw) bool 4kB False False False ... False False energy (chain, draw) float64 32kB -349.6 -347.4 ... -345.7 -352.4 lp (chain, draw) float64 32kB -356.2 -353.0 ... -355.1 -356.7 n_steps (chain, draw) int64 32kB 511 511 511 511 ... 511 511 511 step_size (chain, draw) float64 32kB 0.007235 0.007235 ... 0.005817 tree_depth (chain, draw) int64 32kB 9 9 9 9 9 9 9 9 ... 9 8 9 9 9 9 9 Attributes: created_at: 2024-07-30T11:52:42.039028+00:00 arviz_version: 0.19.0
xarray.Dataset -
- date: 179
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- y(date)float640.4794 0.4527 ... 0.5388 0.5625
array([0.47936319, 0.45268134, 0.53738551, 0.46487367, 0.5343368 , 0.44239849, 0.60963642, 0.73132832, 0.59600126, 0.70565315, 0.61313561, 0.60049297, 0.56404656, 0.78633605, 0.60523784, 0.5580442 , 0.50641716, 0.586594 , 0.46992062, 0.42705583, 0.48426812, 0.38777049, 0.49079078, 0.50002789, 0.44113299, 0.46359002, 0.42484345, 0.42573496, 0.5126282 , 0.55393305, 0.7801562 , 0.61244259, 0.7820166 , 0.7741081 , 0.87677312, 0.63147717, 0.51546283, 0.71272935, 0.93485537, 0.79408756, 0.72228448, 0.68098843, 0.70650313, 0.73308506, 0.4805125 , 0.57954561, 0.93776656, 0.77561424, 0.66655529, 0.59547518, 0.76751515, 0.57312122, 0.50621332, 0.5308715 , 0.52295261, 0.79720566, 0.62933004, 0.46812934, 0.81995741, 0.60723799, 0.63667661, 0.63023046, 0.60081393, 0.54905189, 0.54151156, 0.67785878, 0.580275 , 0.48759392, 0.54008438, 0.7454827 , 0.4601459 , 0.47552149, 0.71676648, 0.72228072, 0.54215422, 0.85509146, 0.684061 , 0.56992491, 0.84343218, 0.58108193, 0.57400488, 0.7216718 , 0.70124307, 0.70769822, 0.89872242, 0.8115083 , 0.72059583, 0.57222288, 1. , 0.8366832 , 0.99252741, 0.70215306, 0.69084327, 0.71206105, 0.64219547, 0.81993542, 0.6896944 , 0.59591584, 0.6458122 , 0.50792736, 0.55944542, 0.63420523, 0.70343723, 0.7740387 , 0.70204359, 0.65253863, 0.81871625, 0.81911895, 0.68380948, 0.71220965, 0.54236837, 0.58017503, 0.6352586 , 0.62739849, 0.92329765, 0.85928619, 0.62316379, 0.56392299, 0.55616857, 0.4257328 , 0.43070972, 0.52466263, 0.54561821, 0.5264453 , 0.41628475, 0.49557027, 0.53537871, 0.53003824, 0.78154262, 0.53440301, 0.63876159, 0.59727845, 0.57348504, 0.72266752, 0.88323619, 0.67509495, 0.68280629, 0.76882837, 0.66983526, 0.70381398, 0.73990877, 0.6594292 , 0.83865735, 0.73595323, 0.56852858, 0.62116609, 0.52960021, 0.67721404, 0.65454618, 0.57113219, 0.55954835, 0.68309668, 0.64092662, 0.61267177, 0.58478466, 0.63905178, 0.56741971, 0.58706316, 0.63111636, 0.84924442, 0.89647751, 0.84943539, 0.68420327, 0.82623974, 0.70912897, 0.66280698, 0.60631287, 0.61775646, 0.54565334, 0.52431821, 0.77688667, 0.53243718, 0.45656482, 0.38411009, 0.42749903, 0.66954245, 0.49776812, 0.53883804, 0.56252938])
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- created_at :
- 2024-07-30T11:52:42.044014+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 3kB Dimensions: (date: 179) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 Data variables: y (date) float64 1kB 0.4794 0.4527 0.5374 ... 0.4978 0.5388 0.5625 Attributes: created_at: 2024-07-30T11:52:42.044014+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- date: 179
- channel: 2
- control: 3
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- channel_data(date, channel)float640.3196 0.0 0.1128 ... 0.4403 0.0
array([[3.19648241e-01, 0.00000000e+00], [1.12765324e-01, 0.00000000e+00], [2.93380707e-01, 0.00000000e+00], [7.16379574e-02, 0.00000000e+00], [3.88041940e-01, 0.00000000e+00], [4.73291540e-02, 0.00000000e+00], [4.25671645e-01, 0.00000000e+00], [3.35039834e-01, 8.84759215e-01], [2.53918849e-01, 0.00000000e+00], [9.41199784e-01, 0.00000000e+00], [4.26630818e-01, 0.00000000e+00], [3.64360623e-01, 0.00000000e+00], [4.42975062e-01, 0.00000000e+00], [4.24530352e-01, 9.69641782e-01], [3.29493374e-01, 0.00000000e+00], [9.25031639e-01, 0.00000000e+00], [3.09048312e-01, 0.00000000e+00], [9.12534800e-01, 0.00000000e+00], [2.51539259e-01, 0.00000000e+00], [2.37266186e-01, 0.00000000e+00], ... [1.70332079e-01, 9.38381372e-01], [4.29038699e-01, 9.20516422e-01], [9.13487319e-01, 0.00000000e+00], [1.42944657e-01, 0.00000000e+00], [1.86838303e-01, 8.55514629e-01], [3.14421972e-01, 0.00000000e+00], [4.00678428e-01, 0.00000000e+00], [1.45069138e-01, 0.00000000e+00], [1.48471239e-01, 0.00000000e+00], [7.00777532e-02, 0.00000000e+00], [1.99103276e-01, 0.00000000e+00], [3.62700587e-01, 9.14000224e-01], [2.41143360e-01, 0.00000000e+00], [4.05094103e-02, 0.00000000e+00], [6.76832332e-02, 0.00000000e+00], [3.31349195e-02, 0.00000000e+00], [1.66170470e-01, 8.68233263e-01], [1.72458556e-01, 0.00000000e+00], [2.81197012e-01, 0.00000000e+00], [4.40328682e-01, 0.00000000e+00]])
- control_data(date, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 178.0
array([[ 0., 0., 0.], [ 0., 0., 1.], [ 0., 0., 2.], [ 0., 0., 3.], [ 0., 0., 4.], [ 0., 0., 5.], [ 0., 0., 6.], [ 0., 0., 7.], [ 0., 0., 8.], [ 0., 0., 9.], [ 0., 0., 10.], [ 0., 0., 11.], [ 0., 0., 12.], [ 0., 0., 13.], [ 0., 0., 14.], [ 0., 0., 15.], [ 0., 0., 16.], [ 0., 0., 17.], [ 0., 0., 18.], [ 0., 0., 19.], ... [ 0., 0., 159.], [ 0., 0., 160.], [ 0., 0., 161.], [ 0., 0., 162.], [ 0., 0., 163.], [ 0., 0., 164.], [ 0., 0., 165.], [ 0., 0., 166.], [ 0., 0., 167.], [ 0., 0., 168.], [ 0., 0., 169.], [ 0., 0., 170.], [ 0., 0., 171.], [ 0., 0., 172.], [ 0., 0., 173.], [ 0., 0., 174.], [ 0., 0., 175.], [ 0., 0., 176.], [ 0., 0., 177.], [ 0., 0., 178.]])
- dayofyear(date)int3292 99 106 113 ... 221 228 235 242
array([ 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242], dtype=int32)
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- created_at :
- 2024-07-30T11:52:42.051294+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 9kB Dimensions: (date: 179, channel: 2, control: 3) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 * channel (channel) <U2 16B 'x1' 'x2' * control (control) <U7 84B 'event_1' 'event_2' 't' Data variables: channel_data (date, channel) float64 3kB 0.3196 0.0 0.1128 ... 0.4403 0.0 control_data (date, control) float64 4kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 178.0 dayofyear (date) int32 716B 92 99 106 113 120 ... 214 221 228 235 242 Attributes: created_at: 2024-07-30T11:52:42.051294+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- index: 179
- index(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- date_week(index)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', ... '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- x1(index)float640.3186 0.1124 ... 0.2803 0.4389
array([3.18580018e-01, 1.12388476e-01, 2.92400266e-01, 7.13985526e-02, 3.86745154e-01, 4.71709861e-02, 4.24249105e-01, 3.33920175e-01, 2.53070285e-01, 9.38054416e-01, 4.25205073e-01, 3.63142977e-01, 4.41494696e-01, 4.23111626e-01, 3.28392249e-01, 9.21940303e-01, 3.08015512e-01, 9.09485226e-01, 2.50698647e-01, 2.36473273e-01, 4.03137932e-01, 1.47177719e-01, 3.63041014e-01, 1.47066490e-01, 9.46704311e-02, 2.59245305e-01, 5.74838249e-02, 2.06465328e-02, 1.65636049e-01, 2.14007141e-01, 3.60517692e-01, 1.22368556e-01, 9.58683953e-01, 3.21972344e-01, 2.53234055e-01, 6.40119796e-02, 2.36553200e-02, 1.83164569e-01, 9.25302245e-01, 9.96658129e-01, 4.01689634e-01, 1.73745461e-01, 9.55372645e-01, 3.55889419e-01, 9.29181335e-04, 4.37815667e-01, 9.73976316e-01, 9.77903945e-01, 2.48141704e-01, 4.05620409e-01, 2.49040963e-01, 5.30524844e-02, 6.63217207e-02, 9.19314691e-02, 2.84652565e-01, 3.73845327e-01, 3.11033721e-01, 1.08200596e-02, 3.25854693e-01, 4.30160827e-01, 4.42189999e-01, 2.68919050e-01, 3.84406892e-01, 3.03780772e-01, 2.22092463e-01, 9.84087017e-01, 1.78161753e-01, 1.52862615e-01, 4.32812209e-01, 3.80735892e-01, 1.33810881e-01, 2.18715931e-01, 3.24034681e-01, 3.66676692e-01, 1.50298760e-01, 9.31123777e-01, 2.99199062e-01, 1.59348190e-01, 4.49282836e-01, 9.18307179e-03, ... 2.83962083e-01, 4.29271667e-01, 1.55574946e-01, 1.07068213e-01, 4.46958034e-01, 3.53012159e-01, 4.05501510e-01, 9.95101996e-01, 1.95552073e-01, 4.21105629e-01, 3.89127721e-02, 2.74762370e-01, 3.88551689e-01, 3.98177912e-01, 9.30166751e-01, 2.59848823e-01, 1.94820914e-01, 2.58231310e-01, 3.02189662e-01, 1.03497234e-01, 8.01700983e-02, 4.15976836e-01, 3.96173495e-01, 4.43288434e-01, 6.38882192e-02, 2.56961240e-01, 4.16716500e-01, 1.89344301e-01, 1.21168779e-02, 3.07204390e-01, 2.79346139e-01, 1.55859670e-01, 2.51259804e-01, 4.15636348e-01, 1.50413447e-01, 4.18457229e-02, 2.92710243e-01, 3.91623929e-01, 9.89705226e-02, 2.68473040e-01, 3.63484578e-01, 1.85363200e-01, 6.59774982e-02, 3.54568453e-01, 1.59422721e-01, 1.81976239e-01, 1.16747054e-01, 3.23780216e-01, 4.34122877e-01, 1.08988007e-01, 1.61353829e-01, 9.42322052e-01, 8.52032642e-02, 3.25819647e-01, 1.67913280e-01, 3.39621958e-01, 2.52901858e-01, 8.64855399e-02, 3.37226955e-01, 1.69762852e-01, 4.27604907e-01, 9.10434562e-01, 1.42466955e-01, 1.86213914e-01, 3.13371214e-01, 3.99339412e-01, 1.44584335e-01, 1.47975068e-01, 6.98435624e-02, 1.98437898e-01, 3.61488489e-01, 2.40337490e-01, 4.03740331e-02, 6.74570446e-02, 3.30241869e-02, 1.65615150e-01, 1.71882222e-01, 2.80257288e-01, 4.38857161e-01])
- x2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0
array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.87978184, 0. , 0. , 0. , 0. , 0. , 0.96418688, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.80062317, 0. , 0. , 0. , 0.8535269 , 0. , 0. , 0.98859712, 0.87047511, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.9748662 , 0. , 0. , 0. , 0.90257287, 0. , 0. , 0. , 0. , 0.99437431, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.95798229, 0. , 0. , 0.88604706, 0.84193305, 0. , 0.91253659, 0. , 0. , 0.99123254, 0. , 0. , 0.95581799, 0.91704461, 0. , 0.80904352, 0. , 0. , 0. , 0.86960149, 0. , 0.9208528 , 0. , 0. , 0. , 0. , 0.99390622, 0. , 0. , 0. , 0. , 0. , 0. , 0.93665676, 0.9093652 , 0. , 0. , 0.80688306, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.89397651, 0.86774976, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.83998152, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.96018382, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.93310233, 0.91533788, 0. , 0. , 0.85070177, 0. , 0. , 0. , 0. , 0. , 0. , 0.90885834, 0. , 0. , 0. , 0. , 0.86334885, 0. , 0. , 0. ])
- event_1(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- event_2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- dayofyear(index)int6492 99 106 113 ... 221 228 235 242
array([ 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242])
- t(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- y(index)float643.985e+03 3.763e+03 ... 4.676e+03
array([3984.66223734, 3762.87179412, 4466.96738844, 3864.21937266, 4441.62527775, 3677.39655018, 5067.54633687, 6079.09904219, 4954.20536859, 5865.67657627, 5096.63305051, 4991.54228314, 4688.5848447 , 6536.34574052, 5030.98358508, 4638.69083472, 4209.54579837, 4876.00838907, 3906.171689 , 3549.86212243, 4025.43395537, 3223.30633321, 4079.65295872, 4156.43557336, 3666.8772267 , 3853.54920598, 3531.47191787, 3538.8824745 , 4261.17449177, 4604.51723377, 6484.97624603, 5090.8724376 , 6500.44070675, 6434.7020032 , 7288.09549867, 5249.09562308, 4284.73710406, 5924.4967947 , 7770.89886433, 6600.77946045, 6003.92292284, 5660.65332884, 5872.74193171, 6093.70178134, 3994.21575864, 4817.41932661, 7795.0978095 , 6447.22166693, 5540.6792271 , 4949.83235925, 6379.8986888 , 4764.01718599, 4207.85140173, 4412.82026656, 4346.99520328, 6626.69831268, 5231.24779003, 3891.28186583, 6815.82014683, 5047.60961099, 5292.31541818, 5238.73239384, 4994.21021861, 4563.9431011 , 4501.26480448, 5634.63844969, 4823.48226687, 4053.07938257, 4489.40147834, 6196.75603817, 3824.9202315 , 3952.72844853, 5958.05509279, 6003.89166699, 4506.60683165, 7107.8687139 , 5686.19380778, 4737.44808553, 7010.95204787, 4830.18985388, ... 4650.33832006, 5271.77236249, 5847.25691642, 6434.12509649, 5835.67243843, 5424.16703016, 6805.503155 , 6808.85054468, 5684.10310247, 5920.17689413, 4508.38691899, 4822.65128872, 5280.52839424, 5215.19196501, 7674.82634251, 7142.73704187, 5179.99140594, 4687.55775271, 4623.09983189, 3538.8645019 , 3580.23476566, 4361.20963926, 4535.40095043, 4376.02791122, 3460.32851473, 4119.38208881, 4450.28600415, 4405.89387854, 6496.50077682, 4442.17560168, 5309.6466714 , 4964.82187487, 4767.04140224, 6007.10694272, 7341.81915474, 5611.66436779, 5675.76416319, 6390.81472343, 5567.94366983, 5850.38866634, 6150.42324303, 5481.44428281, 6971.26166534, 6117.54314155, 4725.84123847, 5163.38572629, 4402.2528145 , 5629.27905386, 5440.85463743, 4747.48354262, 4651.19391143, 5678.17799695, 5327.64323813, 5092.77743153, 4860.96843213, 5312.05880983, 4716.62387739, 4879.90820541, 5246.0963942 , 7059.26575537, 7451.88641636, 7060.8531078 , 5687.37638691, 6868.04144218, 5894.56896391, 5509.52170002, 5039.91969411, 5135.04343508, 4535.6929473 , 4358.34664039, 6457.79858878, 4425.83485865, 3795.15282441, 3192.87959337, 3553.54614781, 5565.50968216, 4137.65148493, 4479.04135141, 4675.97343867])
- indexPandasIndex
PandasIndex(RangeIndex(start=0, stop=179, step=1, name='index'))
<xarray.Dataset> Size: 13kB Dimensions: (index: 179) Coordinates: * index (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 Data variables: date_week (index) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 x1 (index) float64 1kB 0.3186 0.1124 0.2924 ... 0.1719 0.2803 0.4389 x2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.8633 0.0 0.0 0.0 event_1 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 event_2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 dayofyear (index) int64 1kB 92 99 106 113 120 127 ... 214 221 228 235 242 t (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 y (index) float64 1kB 3.985e+03 3.763e+03 ... 4.479e+03 4.676e+03
xarray.Dataset
The fit()
method automatically builds the model using the priors from model_config
, and assigns the created model to our instance. You can access it as a normal attribute.
type(mmm.model)
pymc.model.core.Model
mmm.graphviz()
posterior trace can be accessed by fit_result
attribute
mmm.fit_result
<xarray.Dataset> Size: 63MB Dimensions: (chain: 4, draw: 1000, channel: 2, date: 179, control: 3, fourier_mode: 4) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 ... 997 998 999 * channel (channel) <U2 16B 'x1' 'x2' * date (date) datetime64[ns] 1kB 2018-04-02 ...... * control (control) <U7 84B 'event_1' 'event_2' 't' * fourier_mode (fourier_mode) <U5 80B 'sin_1' ... 'cos_2' Data variables: adstock_alpha (chain, draw, channel) float64 64kB 0.43... channel_contributions (chain, draw, date, channel) float64 11MB ... control_contributions (chain, draw, date, control) float64 17MB ... fourier_contributions (chain, draw, date, fourier_mode) float64 23MB ... gamma_control (chain, draw, control) float64 96kB 0.25... gamma_fourier (chain, draw, fourier_mode) float64 128kB ... intercept (chain, draw) float64 32kB 0.3475 ... 0.369 mu (chain, draw, date) float64 6MB 0.4853 .... saturation_beta (chain, draw, channel) float64 64kB 0.36... saturation_lam (chain, draw, channel) float64 64kB 4.06... y_sigma (chain, draw) float64 32kB 0.03005 ... 0... yearly_seasonality_contribution (chain, draw, date) float64 6MB 0.009931... Attributes: created_at: 2024-07-30T11:52:42.018994+00:00 arviz_version: 0.19.0
- chain: 4
- draw: 1000
- channel: 2
- date: 179
- control: 3
- fourier_mode: 4
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- adstock_alpha(chain, draw, channel)float640.4349 0.1629 ... 0.3867 0.2086
array([[[0.43491453, 0.16292992], [0.40112947, 0.20420502], [0.42446559, 0.19954726], ..., [0.37689874, 0.24297159], [0.37665774, 0.20424557], [0.37951398, 0.15094672]], [[0.41808369, 0.21122023], [0.43898999, 0.20736866], [0.41671688, 0.20922167], ..., [0.33892555, 0.24830247], [0.41939912, 0.19009995], [0.37005099, 0.21032969]], [[0.35190402, 0.2462561 ], [0.37889626, 0.24075485], [0.40447585, 0.17682787], ..., [0.34892833, 0.24371807], [0.43291056, 0.1981904 ], [0.4187749 , 0.21320506]], [[0.40091392, 0.23054468], [0.41691216, 0.17963179], [0.402189 , 0.20205079], ..., [0.40920684, 0.10423079], [0.36769927, 0.17113931], [0.38667718, 0.20863382]]])
- channel_contributions(chain, draw, date, channel)float640.1279 0.0 ... 0.1997 0.002296
array([[[[0.12786817, 0. ], [0.10237041, 0. ], [0.15726894, 0. ], ..., [0.1073587 , 0.04988715], [0.15495974, 0.00826432], [0.2205483 , 0.00134694]], [[0.12762204, 0. ], [0.09769695, 0. ], [0.15311628, 0. ], ..., [0.10282297, 0.04886792], [0.15063707, 0.01007515], [0.21861648, 0.00205746]], [[0.11625866, 0. ], [0.09143201, 0. ], [0.14272329, 0. ], ..., ... ..., [0.10470383, 0.04984428], [0.15135154, 0.00530235], [0.21406407, 0.00055279]], [[0.1268097 , 0. ], [0.0932716 , 0. ], [0.14750014, 0. ], ..., [0.0988701 , 0.05201288], [0.14511097, 0.00905196], [0.20918822, 0.00154968]], [[0.11814408, 0. ], [0.08884605, 0. ], [0.13991741, 0. ], ..., [0.0937566 , 0.05204498], [0.13763149, 0.01100237], [0.19965067, 0.00229584]]]])
- control_contributions(chain, draw, date, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.1118
array([[[[0. , 0. , 0. ], [0. , 0. , 0.00062697], [0. , 0. , 0.00125393], ..., [0. , 0. , 0.11034619], [0. , 0. , 0.11097315], [0. , 0. , 0.11160012]], [[0. , 0. , 0. ], [0. , 0. , 0.00060661], [0. , 0. , 0.00121321], ..., [0. , 0. , 0.10676269], [0. , 0. , 0.1073693 ], [0. , 0. , 0.10797591]], [[0. , 0. , 0. ], [0. , 0. , 0.00060406], [0. , 0. , 0.00120812], ..., ... ..., [0. , 0. , 0.10643784], [0. , 0. , 0.1070426 ], [0. , 0. , 0.10764736]], [[0. , 0. , 0. ], [0. , 0. , 0.00065939], [0. , 0. , 0.00131877], ..., [0. , 0. , 0.11605176], [0. , 0. , 0.11671115], [0. , 0. , 0.11737053]], [[0. , 0. , 0. ], [0. , 0. , 0.00062804], [0. , 0. , 0.00125609], ..., [0. , 0. , 0.11053563], [0. , 0. , 0.11116367], [0. , 0. , 0.11179172]]]])
- fourier_contributions(chain, draw, date, fourier_mode)float640.004798 0.001431 ... -0.001943
array([[[[ 4.79774496e-03, 1.43110703e-03, -7.57183712e-04, 4.45929933e-03], [ 4.75618628e-03, 1.58178348e-02, -8.44217759e-03, 4.30543888e-03], [ 4.64574505e-03, 2.92915389e-02, -1.60049057e-02, 3.90306356e-03], ..., [-3.37630060e-03, -6.05058078e-02, -4.54906625e-02, -4.31618665e-05], [-3.76137780e-03, -5.88992202e-02, -3.97492458e-02, 1.02193188e-03], [-4.09197889e-03, -5.38929121e-02, -3.34321704e-02, 2.02803539e-03]], [[-1.41459489e-03, 1.34471770e-03, -7.07320981e-04, -3.96380610e-03], [-1.40234149e-03, 1.48629850e-02, -7.88623585e-03, -3.82704179e-03], [-1.36977836e-03, 2.75233438e-02, -1.49509365e-02, -3.46937624e-03], ... [-4.78102064e-03, -5.42920571e-02, -4.65525421e-02, -1.61313183e-05], [-5.32631036e-03, -5.28504609e-02, -4.06771046e-02, 3.81936876e-04], [-5.79445903e-03, -4.83582844e-02, -3.42125710e-02, 7.57958055e-04]], [[ 6.06300411e-03, 1.27013735e-03, -7.63274949e-04, -4.27169031e-03], [ 6.01048558e-03, 1.40386584e-02, -8.51009150e-03, -4.12430299e-03], [ 5.87091885e-03, 2.59968520e-02, -1.61336587e-02, -3.73885617e-03], ..., [-4.26669708e-03, -5.37001669e-02, -4.58566165e-02, 4.13459858e-05], [-4.75332666e-03, -5.22742869e-02, -4.00690124e-02, -9.78937763e-04], [-5.17111372e-03, -4.78310840e-02, -3.37011187e-02, -1.94271308e-03]]]])
- gamma_control(chain, draw, control)float640.2521 0.299 ... 0.3397 0.000628
array([[[0.25213312, 0.2989991 , 0.00062697], [0.23372642, 0.3056338 , 0.00060661], [0.23732665, 0.29886166, 0.00060406], ..., [0.22804442, 0.36173823, 0.00062819], [0.19150706, 0.38279107, 0.00057938], [0.28876443, 0.27547333, 0.00059507]], [[0.23214881, 0.26496017, 0.00059146], [0.21659654, 0.25448427, 0.0007759 ], [0.20863317, 0.26455187, 0.00056028], ..., [0.26285821, 0.30468479, 0.00067413], [0.26698958, 0.2874097 , 0.00061238], [0.24619481, 0.39513223, 0.00065064]], [[0.19514857, 0.33792974, 0.00058735], [0.29266963, 0.34899422, 0.00054109], [0.22190299, 0.30638963, 0.00064604], ..., [0.1876274 , 0.38323342, 0.00058825], [0.2941488 , 0.29601567, 0.00060884], [0.28938611, 0.32113872, 0.00065385]], [[0.24924791, 0.34535736, 0.0006621 ], [0.20106594, 0.32419433, 0.00055556], [0.20767738, 0.30012083, 0.00063615], ..., [0.27876565, 0.27172377, 0.00060476], [0.24385579, 0.34741107, 0.00065939], [0.24869219, 0.33974399, 0.00062804]]])
- gamma_fourier(chain, draw, fourier_mode)float640.004798 -0.06051 ... 0.004273
array([[[ 0.00479808, -0.06050864, 0.0640245 , -0.00446055], [-0.00141469, -0.05685601, 0.0598083 , 0.00396492], [ 0.00217156, -0.05051466, 0.05624161, 0.0028631 ], ..., [ 0.00850373, -0.0595431 , 0.05699714, 0.00165331], [ 0.00419424, -0.05573242, 0.06551116, 0.00573148], [ 0.00962834, -0.05838413, 0.06149928, 0.00060337]], [[ 0.0012791 , -0.05674273, 0.06681569, -0.00208387], [-0.00126885, -0.06664473, 0.06567002, 0.00145345], [ 0.00177667, -0.06163274, 0.06676791, 0.00177583], ..., [ 0.00484937, -0.05624146, 0.06182268, 0.00319376], [ 0.00998234, -0.0480922 , 0.06346699, 0.00331239], [-0.0033222 , -0.06705298, 0.06248041, 0.00165701]], [[ 0.00454857, -0.0542172 , 0.05947344, 0.00664475], [ 0.00876148, -0.05713653, 0.06678687, 0.00118017], [-0.0019831 , -0.0567738 , 0.05904132, 0.00428764], ..., [ 0.00740584, -0.05257177, 0.05782493, 0.00469463], [ 0.0004801 , -0.06087393, 0.06560057, 0.00167565], [ 0.0079182 , -0.05545607, 0.06555048, -0.0002396 ]], [[ 0.00386162, -0.06013293, 0.06254302, 0.00112875], [ 0.00054344, -0.05573833, 0.06214554, -0.00019137], [ 0.0012377 , -0.05528381, 0.06132686, -0.00064992], ..., [ 0.00203021, -0.05730508, 0.06081237, 0.00899997], [ 0.00679434, -0.0542946 , 0.06551901, -0.00166709], [ 0.00606343, -0.05370268, 0.06453955, 0.00427289]]])
- intercept(chain, draw)float640.3475 0.3531 ... 0.3615 0.369
array([[0.34746613, 0.35312181, 0.35779892, ..., 0.34922646, 0.36098357, 0.34264298], [0.36140209, 0.34615241, 0.3519514 , ..., 0.35483622, 0.36489464, 0.33480966], [0.35715413, 0.37103469, 0.32834264, ..., 0.34407002, 0.35134761, 0.33704257], [0.33027724, 0.34706866, 0.34793088, ..., 0.36032494, 0.36152326, 0.36899174]])
- mu(chain, draw, date)float640.4853 0.4669 ... 0.5307 0.5941
array([[[0.48526527, 0.46690079, 0.52782445, ..., 0.50564224, 0.52027543, 0.59157247], [0.47600285, 0.45317273, 0.51518455, ..., 0.51326092, 0.52892859, 0.59930525], [0.47389628, 0.45501338, 0.51172191, ..., 0.52317055, 0.5298895 , 0.59507911], ..., [0.49344413, 0.46721152, 0.53097196, ..., 0.5244273 , 0.53215255, 0.594024 ], [0.49255739, 0.46521172, 0.52654547, ..., 0.51084556, 0.52629969, 0.59216943], [0.49521283, 0.46669594, 0.53251928, ..., 0.49863371, 0.51683303, 0.58910737]], [[0.49120495, 0.46984941, 0.52944248, ..., 0.50169106, 0.52750761, 0.59973636], [0.46104364, 0.44665261, 0.50605614, ..., 0.50801533, 0.52955282, 0.59956342], [0.48762126, 0.46550376, 0.5300494 , ..., 0.49332605, 0.51785434, 0.59235221], ... [0.49744869, 0.46266126, 0.52982233, ..., 0.52040464, 0.53586048, 0.6003944 ], [0.47600818, 0.45800735, 0.5184772 , ..., 0.50438318, 0.5197213 , 0.58838147], [0.4819161 , 0.45897165, 0.52108348, ..., 0.51144645, 0.52565466, 0.59314441]], [[0.47592671, 0.45070281, 0.51727869, ..., 0.51326563, 0.52741736, 0.59751087], [0.48812601, 0.46459603, 0.52880863, ..., 0.50832446, 0.52696676, 0.5985003 ], [0.48566414, 0.46111132, 0.52375703, ..., 0.51998483, 0.5369565 , 0.60630523], ..., [0.48212183, 0.46091238, 0.52186746, ..., 0.51945858, 0.52683206, 0.5939713 ], [0.49730272, 0.46935252, 0.52828441, ..., 0.52281625, 0.5339254 , 0.60202434], [0.48943399, 0.46588058, 0.52216049, ..., 0.52154682, 0.53071371, 0.59408394]]])
- saturation_beta(chain, draw, channel)float640.3636 0.2229 ... 0.36 0.2582
array([[[0.3635677 , 0.22285995], [0.39792924, 0.28395112], [0.39428451, 0.25469264], ..., [0.33458502, 0.25693458], [0.34308289, 0.2844981 ], [0.36083963, 0.22760342]], [[0.37889897, 0.3945551 ], [0.37865529, 0.36809264], [0.39170561, 0.40473342], ..., [0.3519309 , 0.26482416], [0.35615163, 0.29017406], [0.36872576, 0.25538924]], [[0.34583895, 0.26855338], [0.33932437, 0.34044514], [0.37970693, 0.216313 ], ..., [0.34150619, 0.30044084], [0.36211826, 0.26521304], [0.35017232, 0.253288 ]], [[0.37484335, 0.23499439], [0.36120914, 0.24932466], [0.35837625, 0.23801221], ..., [0.3387533 , 0.20309728], [0.36037638, 0.23101931], [0.35996453, 0.25824801]]])
- saturation_lam(chain, draw, channel)float644.063 3.845 3.471 ... 3.475 2.85
array([[[4.06266341, 3.84548752], [3.47098299, 2.46312441], [3.30013266, 3.16423052], ..., [4.35271519, 3.10134575], [4.08926128, 2.43134246], [4.22223859, 3.74694864]], [[3.70984694, 1.32962529], [3.55154563, 1.5072354 ], [3.85132351, 1.4547802 ], ..., [3.73120317, 2.86441501], [3.79553188, 2.2234866 ], [4.27958807, 2.78339513]], [[4.04407399, 2.81565209], [4.01450181, 1.96046944], [4.23534831, 4.00426959], ..., [4.53177141, 2.33367313], [3.97343356, 2.70104654], [4.41480755, 2.99085799]], [[4.16873188, 3.30216222], [4.37524809, 3.07803073], [4.15296093, 3.05496657], ..., [4.21173571, 6.18105705], [3.63623289, 3.71930652], [3.47518602, 2.84955306]]])
- y_sigma(chain, draw)float640.03005 0.02756 ... 0.02974 0.02986
array([[0.03004884, 0.02756202, 0.03039778, ..., 0.0275736 , 0.03067354, 0.02935603], [0.03031903, 0.02944373, 0.03019217, ..., 0.02883972, 0.02841733, 0.03029156], [0.03306883, 0.02971561, 0.03097913, ..., 0.03010724, 0.0283991 , 0.02781049], [0.02876188, 0.02757842, 0.02722469, ..., 0.02850164, 0.02974464, 0.02985767]])
- yearly_seasonality_contribution(chain, draw, date)float640.009931 0.01644 ... -0.08865
array([[[ 0.00993097, 0.01643728, 0.02183544, ..., -0.10941593, -0.10138791, -0.08938903], [-0.004741 , 0.00174737, 0.00773325, ..., -0.09831447, -0.09227474, -0.0824664 ], [-0.0001613 , 0.00517838, 0.00999158, ..., -0.09197344, -0.08644666, -0.07751347], ..., [ 0.00758449, 0.01488354, 0.021363 , ..., -0.10600579, -0.10039086, -0.09079957], [-0.00099255, 0.0045565 , 0.00964881, ..., -0.10517272, -0.09952339, -0.09003026], [ 0.009678 , 0.01611513, 0.02168412, ..., -0.10884724, -0.10269891, -0.09259997]], [[ 0.00391414, 0.00930249, 0.01382777, ..., -0.10513418, -0.09724093, -0.08557183], [-0.00192222, 0.00610206, 0.01334533, ..., -0.11239451, -0.10498125, -0.09322823], [ 0.00066928, 0.00735485, 0.01331138, ..., -0.11030279, -0.10324555, -0.09208144], ... [ 0.00327153, 0.0089281 , 0.01405707, ..., -0.09882096, -0.09395499, -0.08546916], [-0.00053119, 0.00612186, 0.01206812, ..., -0.1078032 , -0.1007428 , -0.08964472], [ 0.00869356, 0.01393396, 0.01833573, ..., -0.10760255, -0.10083013, -0.09026576]], [[ 0.00341548, 0.01021119, 0.01622644, ..., -0.10727457, -0.10064884, -0.09002339], [ 0.00131803, 0.00709979, 0.01214071, ..., -0.1002756 , -0.09322067, -0.08247164], [ 0.00246961, 0.00821973, 0.01319881, ..., -0.0997324 , -0.09270918, -0.08202293], ..., [-0.00633125, 0.00028721, 0.0066294 , ..., -0.1018523 , -0.09718937, -0.08861785], [ 0.00896976, 0.01389828, 0.01794224, ..., -0.10564175, -0.09847194, -0.08760736], [ 0.00229818, 0.00741475, 0.01199526, ..., -0.10378213, -0.09807556, -0.08864603]]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- fourier_modePandasIndex
PandasIndex(Index(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='object', name='fourier_mode'))
- created_at :
- 2024-07-30T11:52:42.018994+00:00
- arviz_version :
- 0.19.0
If you wish to inspect the entire inference data, use the idata
attribute. Within idata
, you can find the entire dataset passed to the model under fit_data
.
mmm.idata
-
- chain: 4
- draw: 1000
- channel: 2
- date: 179
- control: 3
- fourier_mode: 4
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- adstock_alpha(chain, draw, channel)float640.4349 0.1629 ... 0.3867 0.2086
array([[[0.43491453, 0.16292992], [0.40112947, 0.20420502], [0.42446559, 0.19954726], ..., [0.37689874, 0.24297159], [0.37665774, 0.20424557], [0.37951398, 0.15094672]], [[0.41808369, 0.21122023], [0.43898999, 0.20736866], [0.41671688, 0.20922167], ..., [0.33892555, 0.24830247], [0.41939912, 0.19009995], [0.37005099, 0.21032969]], [[0.35190402, 0.2462561 ], [0.37889626, 0.24075485], [0.40447585, 0.17682787], ..., [0.34892833, 0.24371807], [0.43291056, 0.1981904 ], [0.4187749 , 0.21320506]], [[0.40091392, 0.23054468], [0.41691216, 0.17963179], [0.402189 , 0.20205079], ..., [0.40920684, 0.10423079], [0.36769927, 0.17113931], [0.38667718, 0.20863382]]])
- channel_contributions(chain, draw, date, channel)float640.1279 0.0 ... 0.1997 0.002296
array([[[[0.12786817, 0. ], [0.10237041, 0. ], [0.15726894, 0. ], ..., [0.1073587 , 0.04988715], [0.15495974, 0.00826432], [0.2205483 , 0.00134694]], [[0.12762204, 0. ], [0.09769695, 0. ], [0.15311628, 0. ], ..., [0.10282297, 0.04886792], [0.15063707, 0.01007515], [0.21861648, 0.00205746]], [[0.11625866, 0. ], [0.09143201, 0. ], [0.14272329, 0. ], ..., ... ..., [0.10470383, 0.04984428], [0.15135154, 0.00530235], [0.21406407, 0.00055279]], [[0.1268097 , 0. ], [0.0932716 , 0. ], [0.14750014, 0. ], ..., [0.0988701 , 0.05201288], [0.14511097, 0.00905196], [0.20918822, 0.00154968]], [[0.11814408, 0. ], [0.08884605, 0. ], [0.13991741, 0. ], ..., [0.0937566 , 0.05204498], [0.13763149, 0.01100237], [0.19965067, 0.00229584]]]])
- control_contributions(chain, draw, date, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.1118
array([[[[0. , 0. , 0. ], [0. , 0. , 0.00062697], [0. , 0. , 0.00125393], ..., [0. , 0. , 0.11034619], [0. , 0. , 0.11097315], [0. , 0. , 0.11160012]], [[0. , 0. , 0. ], [0. , 0. , 0.00060661], [0. , 0. , 0.00121321], ..., [0. , 0. , 0.10676269], [0. , 0. , 0.1073693 ], [0. , 0. , 0.10797591]], [[0. , 0. , 0. ], [0. , 0. , 0.00060406], [0. , 0. , 0.00120812], ..., ... ..., [0. , 0. , 0.10643784], [0. , 0. , 0.1070426 ], [0. , 0. , 0.10764736]], [[0. , 0. , 0. ], [0. , 0. , 0.00065939], [0. , 0. , 0.00131877], ..., [0. , 0. , 0.11605176], [0. , 0. , 0.11671115], [0. , 0. , 0.11737053]], [[0. , 0. , 0. ], [0. , 0. , 0.00062804], [0. , 0. , 0.00125609], ..., [0. , 0. , 0.11053563], [0. , 0. , 0.11116367], [0. , 0. , 0.11179172]]]])
- fourier_contributions(chain, draw, date, fourier_mode)float640.004798 0.001431 ... -0.001943
array([[[[ 4.79774496e-03, 1.43110703e-03, -7.57183712e-04, 4.45929933e-03], [ 4.75618628e-03, 1.58178348e-02, -8.44217759e-03, 4.30543888e-03], [ 4.64574505e-03, 2.92915389e-02, -1.60049057e-02, 3.90306356e-03], ..., [-3.37630060e-03, -6.05058078e-02, -4.54906625e-02, -4.31618665e-05], [-3.76137780e-03, -5.88992202e-02, -3.97492458e-02, 1.02193188e-03], [-4.09197889e-03, -5.38929121e-02, -3.34321704e-02, 2.02803539e-03]], [[-1.41459489e-03, 1.34471770e-03, -7.07320981e-04, -3.96380610e-03], [-1.40234149e-03, 1.48629850e-02, -7.88623585e-03, -3.82704179e-03], [-1.36977836e-03, 2.75233438e-02, -1.49509365e-02, -3.46937624e-03], ... [-4.78102064e-03, -5.42920571e-02, -4.65525421e-02, -1.61313183e-05], [-5.32631036e-03, -5.28504609e-02, -4.06771046e-02, 3.81936876e-04], [-5.79445903e-03, -4.83582844e-02, -3.42125710e-02, 7.57958055e-04]], [[ 6.06300411e-03, 1.27013735e-03, -7.63274949e-04, -4.27169031e-03], [ 6.01048558e-03, 1.40386584e-02, -8.51009150e-03, -4.12430299e-03], [ 5.87091885e-03, 2.59968520e-02, -1.61336587e-02, -3.73885617e-03], ..., [-4.26669708e-03, -5.37001669e-02, -4.58566165e-02, 4.13459858e-05], [-4.75332666e-03, -5.22742869e-02, -4.00690124e-02, -9.78937763e-04], [-5.17111372e-03, -4.78310840e-02, -3.37011187e-02, -1.94271308e-03]]]])
- gamma_control(chain, draw, control)float640.2521 0.299 ... 0.3397 0.000628
array([[[0.25213312, 0.2989991 , 0.00062697], [0.23372642, 0.3056338 , 0.00060661], [0.23732665, 0.29886166, 0.00060406], ..., [0.22804442, 0.36173823, 0.00062819], [0.19150706, 0.38279107, 0.00057938], [0.28876443, 0.27547333, 0.00059507]], [[0.23214881, 0.26496017, 0.00059146], [0.21659654, 0.25448427, 0.0007759 ], [0.20863317, 0.26455187, 0.00056028], ..., [0.26285821, 0.30468479, 0.00067413], [0.26698958, 0.2874097 , 0.00061238], [0.24619481, 0.39513223, 0.00065064]], [[0.19514857, 0.33792974, 0.00058735], [0.29266963, 0.34899422, 0.00054109], [0.22190299, 0.30638963, 0.00064604], ..., [0.1876274 , 0.38323342, 0.00058825], [0.2941488 , 0.29601567, 0.00060884], [0.28938611, 0.32113872, 0.00065385]], [[0.24924791, 0.34535736, 0.0006621 ], [0.20106594, 0.32419433, 0.00055556], [0.20767738, 0.30012083, 0.00063615], ..., [0.27876565, 0.27172377, 0.00060476], [0.24385579, 0.34741107, 0.00065939], [0.24869219, 0.33974399, 0.00062804]]])
- gamma_fourier(chain, draw, fourier_mode)float640.004798 -0.06051 ... 0.004273
array([[[ 0.00479808, -0.06050864, 0.0640245 , -0.00446055], [-0.00141469, -0.05685601, 0.0598083 , 0.00396492], [ 0.00217156, -0.05051466, 0.05624161, 0.0028631 ], ..., [ 0.00850373, -0.0595431 , 0.05699714, 0.00165331], [ 0.00419424, -0.05573242, 0.06551116, 0.00573148], [ 0.00962834, -0.05838413, 0.06149928, 0.00060337]], [[ 0.0012791 , -0.05674273, 0.06681569, -0.00208387], [-0.00126885, -0.06664473, 0.06567002, 0.00145345], [ 0.00177667, -0.06163274, 0.06676791, 0.00177583], ..., [ 0.00484937, -0.05624146, 0.06182268, 0.00319376], [ 0.00998234, -0.0480922 , 0.06346699, 0.00331239], [-0.0033222 , -0.06705298, 0.06248041, 0.00165701]], [[ 0.00454857, -0.0542172 , 0.05947344, 0.00664475], [ 0.00876148, -0.05713653, 0.06678687, 0.00118017], [-0.0019831 , -0.0567738 , 0.05904132, 0.00428764], ..., [ 0.00740584, -0.05257177, 0.05782493, 0.00469463], [ 0.0004801 , -0.06087393, 0.06560057, 0.00167565], [ 0.0079182 , -0.05545607, 0.06555048, -0.0002396 ]], [[ 0.00386162, -0.06013293, 0.06254302, 0.00112875], [ 0.00054344, -0.05573833, 0.06214554, -0.00019137], [ 0.0012377 , -0.05528381, 0.06132686, -0.00064992], ..., [ 0.00203021, -0.05730508, 0.06081237, 0.00899997], [ 0.00679434, -0.0542946 , 0.06551901, -0.00166709], [ 0.00606343, -0.05370268, 0.06453955, 0.00427289]]])
- intercept(chain, draw)float640.3475 0.3531 ... 0.3615 0.369
array([[0.34746613, 0.35312181, 0.35779892, ..., 0.34922646, 0.36098357, 0.34264298], [0.36140209, 0.34615241, 0.3519514 , ..., 0.35483622, 0.36489464, 0.33480966], [0.35715413, 0.37103469, 0.32834264, ..., 0.34407002, 0.35134761, 0.33704257], [0.33027724, 0.34706866, 0.34793088, ..., 0.36032494, 0.36152326, 0.36899174]])
- mu(chain, draw, date)float640.4853 0.4669 ... 0.5307 0.5941
array([[[0.48526527, 0.46690079, 0.52782445, ..., 0.50564224, 0.52027543, 0.59157247], [0.47600285, 0.45317273, 0.51518455, ..., 0.51326092, 0.52892859, 0.59930525], [0.47389628, 0.45501338, 0.51172191, ..., 0.52317055, 0.5298895 , 0.59507911], ..., [0.49344413, 0.46721152, 0.53097196, ..., 0.5244273 , 0.53215255, 0.594024 ], [0.49255739, 0.46521172, 0.52654547, ..., 0.51084556, 0.52629969, 0.59216943], [0.49521283, 0.46669594, 0.53251928, ..., 0.49863371, 0.51683303, 0.58910737]], [[0.49120495, 0.46984941, 0.52944248, ..., 0.50169106, 0.52750761, 0.59973636], [0.46104364, 0.44665261, 0.50605614, ..., 0.50801533, 0.52955282, 0.59956342], [0.48762126, 0.46550376, 0.5300494 , ..., 0.49332605, 0.51785434, 0.59235221], ... [0.49744869, 0.46266126, 0.52982233, ..., 0.52040464, 0.53586048, 0.6003944 ], [0.47600818, 0.45800735, 0.5184772 , ..., 0.50438318, 0.5197213 , 0.58838147], [0.4819161 , 0.45897165, 0.52108348, ..., 0.51144645, 0.52565466, 0.59314441]], [[0.47592671, 0.45070281, 0.51727869, ..., 0.51326563, 0.52741736, 0.59751087], [0.48812601, 0.46459603, 0.52880863, ..., 0.50832446, 0.52696676, 0.5985003 ], [0.48566414, 0.46111132, 0.52375703, ..., 0.51998483, 0.5369565 , 0.60630523], ..., [0.48212183, 0.46091238, 0.52186746, ..., 0.51945858, 0.52683206, 0.5939713 ], [0.49730272, 0.46935252, 0.52828441, ..., 0.52281625, 0.5339254 , 0.60202434], [0.48943399, 0.46588058, 0.52216049, ..., 0.52154682, 0.53071371, 0.59408394]]])
- saturation_beta(chain, draw, channel)float640.3636 0.2229 ... 0.36 0.2582
array([[[0.3635677 , 0.22285995], [0.39792924, 0.28395112], [0.39428451, 0.25469264], ..., [0.33458502, 0.25693458], [0.34308289, 0.2844981 ], [0.36083963, 0.22760342]], [[0.37889897, 0.3945551 ], [0.37865529, 0.36809264], [0.39170561, 0.40473342], ..., [0.3519309 , 0.26482416], [0.35615163, 0.29017406], [0.36872576, 0.25538924]], [[0.34583895, 0.26855338], [0.33932437, 0.34044514], [0.37970693, 0.216313 ], ..., [0.34150619, 0.30044084], [0.36211826, 0.26521304], [0.35017232, 0.253288 ]], [[0.37484335, 0.23499439], [0.36120914, 0.24932466], [0.35837625, 0.23801221], ..., [0.3387533 , 0.20309728], [0.36037638, 0.23101931], [0.35996453, 0.25824801]]])
- saturation_lam(chain, draw, channel)float644.063 3.845 3.471 ... 3.475 2.85
array([[[4.06266341, 3.84548752], [3.47098299, 2.46312441], [3.30013266, 3.16423052], ..., [4.35271519, 3.10134575], [4.08926128, 2.43134246], [4.22223859, 3.74694864]], [[3.70984694, 1.32962529], [3.55154563, 1.5072354 ], [3.85132351, 1.4547802 ], ..., [3.73120317, 2.86441501], [3.79553188, 2.2234866 ], [4.27958807, 2.78339513]], [[4.04407399, 2.81565209], [4.01450181, 1.96046944], [4.23534831, 4.00426959], ..., [4.53177141, 2.33367313], [3.97343356, 2.70104654], [4.41480755, 2.99085799]], [[4.16873188, 3.30216222], [4.37524809, 3.07803073], [4.15296093, 3.05496657], ..., [4.21173571, 6.18105705], [3.63623289, 3.71930652], [3.47518602, 2.84955306]]])
- y_sigma(chain, draw)float640.03005 0.02756 ... 0.02974 0.02986
array([[0.03004884, 0.02756202, 0.03039778, ..., 0.0275736 , 0.03067354, 0.02935603], [0.03031903, 0.02944373, 0.03019217, ..., 0.02883972, 0.02841733, 0.03029156], [0.03306883, 0.02971561, 0.03097913, ..., 0.03010724, 0.0283991 , 0.02781049], [0.02876188, 0.02757842, 0.02722469, ..., 0.02850164, 0.02974464, 0.02985767]])
- yearly_seasonality_contribution(chain, draw, date)float640.009931 0.01644 ... -0.08865
array([[[ 0.00993097, 0.01643728, 0.02183544, ..., -0.10941593, -0.10138791, -0.08938903], [-0.004741 , 0.00174737, 0.00773325, ..., -0.09831447, -0.09227474, -0.0824664 ], [-0.0001613 , 0.00517838, 0.00999158, ..., -0.09197344, -0.08644666, -0.07751347], ..., [ 0.00758449, 0.01488354, 0.021363 , ..., -0.10600579, -0.10039086, -0.09079957], [-0.00099255, 0.0045565 , 0.00964881, ..., -0.10517272, -0.09952339, -0.09003026], [ 0.009678 , 0.01611513, 0.02168412, ..., -0.10884724, -0.10269891, -0.09259997]], [[ 0.00391414, 0.00930249, 0.01382777, ..., -0.10513418, -0.09724093, -0.08557183], [-0.00192222, 0.00610206, 0.01334533, ..., -0.11239451, -0.10498125, -0.09322823], [ 0.00066928, 0.00735485, 0.01331138, ..., -0.11030279, -0.10324555, -0.09208144], ... [ 0.00327153, 0.0089281 , 0.01405707, ..., -0.09882096, -0.09395499, -0.08546916], [-0.00053119, 0.00612186, 0.01206812, ..., -0.1078032 , -0.1007428 , -0.08964472], [ 0.00869356, 0.01393396, 0.01833573, ..., -0.10760255, -0.10083013, -0.09026576]], [[ 0.00341548, 0.01021119, 0.01622644, ..., -0.10727457, -0.10064884, -0.09002339], [ 0.00131803, 0.00709979, 0.01214071, ..., -0.1002756 , -0.09322067, -0.08247164], [ 0.00246961, 0.00821973, 0.01319881, ..., -0.0997324 , -0.09270918, -0.08202293], ..., [-0.00633125, 0.00028721, 0.0066294 , ..., -0.1018523 , -0.09718937, -0.08861785], [ 0.00896976, 0.01389828, 0.01794224, ..., -0.10564175, -0.09847194, -0.08760736], [ 0.00229818, 0.00741475, 0.01199526, ..., -0.10378213, -0.09807556, -0.08864603]]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- fourier_modePandasIndex
PandasIndex(Index(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='object', name='fourier_mode'))
- created_at :
- 2024-07-30T11:52:42.018994+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 63MB Dimensions: (chain: 4, draw: 1000, channel: 2, date: 179, control: 3, fourier_mode: 4) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 ... 997 998 999 * channel (channel) <U2 16B 'x1' 'x2' * date (date) datetime64[ns] 1kB 2018-04-02 ...... * control (control) <U7 84B 'event_1' 'event_2' 't' * fourier_mode (fourier_mode) <U5 80B 'sin_1' ... 'cos_2' Data variables: adstock_alpha (chain, draw, channel) float64 64kB 0.43... channel_contributions (chain, draw, date, channel) float64 11MB ... control_contributions (chain, draw, date, control) float64 17MB ... fourier_contributions (chain, draw, date, fourier_mode) float64 23MB ... gamma_control (chain, draw, control) float64 96kB 0.25... gamma_fourier (chain, draw, fourier_mode) float64 128kB ... intercept (chain, draw) float64 32kB 0.3475 ... 0.369 mu (chain, draw, date) float64 6MB 0.4853 .... saturation_beta (chain, draw, channel) float64 64kB 0.36... saturation_lam (chain, draw, channel) float64 64kB 4.06... y_sigma (chain, draw) float64 32kB 0.03005 ... 0... yearly_seasonality_contribution (chain, draw, date) float64 6MB 0.009931... Attributes: created_at: 2024-07-30T11:52:42.018994+00:00 arviz_version: 0.19.0
xarray.Dataset -
- chain: 4
- draw: 1000
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- acceptance_rate(chain, draw)float640.9973 0.8772 ... 0.897 0.9993
array([[0.99734247, 0.87723435, 0.9118903 , ..., 0.99317618, 0.99997901, 0.56841913], [0.7962355 , 0.9986148 , 0.99931209, ..., 0.97885607, 0.9002364 , 0.90109604], [0.77958441, 0.81676485, 0.98578191, ..., 0.88747137, 0.99663724, 0.9995098 ], [0.84698646, 0.98628525, 0.99944013, ..., 0.96667972, 0.89695131, 0.99929059]])
- diverging(chain, draw)boolFalse False False ... False False
array([[False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False], [False, False, False, ..., False, False, False]])
- energy(chain, draw)float64-349.6 -347.4 ... -345.7 -352.4
array([[-349.55230473, -347.39727217, -341.15924362, ..., -343.10637412, -348.48724344, -343.62412541], [-339.50159365, -338.18428021, -338.81246594, ..., -347.25520713, -340.6611464 , -342.25387946], [-345.63000006, -342.89885823, -346.5178656 , ..., -342.72005691, -345.90269559, -348.38509117], [-349.30152894, -350.52251623, -349.76422102, ..., -343.27110856, -345.65101347, -352.36628761]])
- lp(chain, draw)float64-356.2 -353.0 ... -355.1 -356.7
array([[-356.19265931, -352.99687239, -351.20975268, ..., -352.8513941 , -354.82449383, -350.16209218], [-348.37123268, -341.8143295 , -348.87370103, ..., -353.14754619, -348.82764216, -350.19404097], [-353.2794217 , -351.436295 , -353.07829697, ..., -351.9501912 , -356.11123392, -354.6587712 ], [-355.64740253, -354.95948322, -356.20454226, ..., -350.47045888, -355.12625108, -356.67699431]])
- n_steps(chain, draw)int64511 511 511 511 ... 511 511 511 511
array([[ 511, 511, 511, ..., 511, 511, 511], [ 511, 511, 1023, ..., 511, 255, 511], [ 511, 511, 511, ..., 511, 511, 511], [1023, 511, 1023, ..., 511, 511, 511]])
- step_size(chain, draw)float640.007235 0.007235 ... 0.005817
array([[0.00723475, 0.00723475, 0.00723475, ..., 0.00723475, 0.00723475, 0.00723475], [0.00690365, 0.00690365, 0.00690365, ..., 0.00690365, 0.00690365, 0.00690365], [0.00645019, 0.00645019, 0.00645019, ..., 0.00645019, 0.00645019, 0.00645019], [0.00581653, 0.00581653, 0.00581653, ..., 0.00581653, 0.00581653, 0.00581653]])
- tree_depth(chain, draw)int649 9 9 9 9 9 9 9 ... 9 9 8 9 9 9 9 9
array([[ 9, 9, 9, ..., 9, 9, 9], [ 9, 9, 10, ..., 9, 8, 9], [ 9, 9, 9, ..., 9, 9, 9], [10, 9, 10, ..., 9, 9, 9]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- created_at :
- 2024-07-30T11:52:42.039028+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 204kB Dimensions: (chain: 4, draw: 1000) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999 Data variables: acceptance_rate (chain, draw) float64 32kB 0.9973 0.8772 ... 0.897 0.9993 diverging (chain, draw) bool 4kB False False False ... False False energy (chain, draw) float64 32kB -349.6 -347.4 ... -345.7 -352.4 lp (chain, draw) float64 32kB -356.2 -353.0 ... -355.1 -356.7 n_steps (chain, draw) int64 32kB 511 511 511 511 ... 511 511 511 step_size (chain, draw) float64 32kB 0.007235 0.007235 ... 0.005817 tree_depth (chain, draw) int64 32kB 9 9 9 9 9 9 9 9 ... 9 8 9 9 9 9 9 Attributes: created_at: 2024-07-30T11:52:42.039028+00:00 arviz_version: 0.19.0
xarray.Dataset -
- date: 179
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- y(date)float640.4794 0.4527 ... 0.5388 0.5625
array([0.47936319, 0.45268134, 0.53738551, 0.46487367, 0.5343368 , 0.44239849, 0.60963642, 0.73132832, 0.59600126, 0.70565315, 0.61313561, 0.60049297, 0.56404656, 0.78633605, 0.60523784, 0.5580442 , 0.50641716, 0.586594 , 0.46992062, 0.42705583, 0.48426812, 0.38777049, 0.49079078, 0.50002789, 0.44113299, 0.46359002, 0.42484345, 0.42573496, 0.5126282 , 0.55393305, 0.7801562 , 0.61244259, 0.7820166 , 0.7741081 , 0.87677312, 0.63147717, 0.51546283, 0.71272935, 0.93485537, 0.79408756, 0.72228448, 0.68098843, 0.70650313, 0.73308506, 0.4805125 , 0.57954561, 0.93776656, 0.77561424, 0.66655529, 0.59547518, 0.76751515, 0.57312122, 0.50621332, 0.5308715 , 0.52295261, 0.79720566, 0.62933004, 0.46812934, 0.81995741, 0.60723799, 0.63667661, 0.63023046, 0.60081393, 0.54905189, 0.54151156, 0.67785878, 0.580275 , 0.48759392, 0.54008438, 0.7454827 , 0.4601459 , 0.47552149, 0.71676648, 0.72228072, 0.54215422, 0.85509146, 0.684061 , 0.56992491, 0.84343218, 0.58108193, 0.57400488, 0.7216718 , 0.70124307, 0.70769822, 0.89872242, 0.8115083 , 0.72059583, 0.57222288, 1. , 0.8366832 , 0.99252741, 0.70215306, 0.69084327, 0.71206105, 0.64219547, 0.81993542, 0.6896944 , 0.59591584, 0.6458122 , 0.50792736, 0.55944542, 0.63420523, 0.70343723, 0.7740387 , 0.70204359, 0.65253863, 0.81871625, 0.81911895, 0.68380948, 0.71220965, 0.54236837, 0.58017503, 0.6352586 , 0.62739849, 0.92329765, 0.85928619, 0.62316379, 0.56392299, 0.55616857, 0.4257328 , 0.43070972, 0.52466263, 0.54561821, 0.5264453 , 0.41628475, 0.49557027, 0.53537871, 0.53003824, 0.78154262, 0.53440301, 0.63876159, 0.59727845, 0.57348504, 0.72266752, 0.88323619, 0.67509495, 0.68280629, 0.76882837, 0.66983526, 0.70381398, 0.73990877, 0.6594292 , 0.83865735, 0.73595323, 0.56852858, 0.62116609, 0.52960021, 0.67721404, 0.65454618, 0.57113219, 0.55954835, 0.68309668, 0.64092662, 0.61267177, 0.58478466, 0.63905178, 0.56741971, 0.58706316, 0.63111636, 0.84924442, 0.89647751, 0.84943539, 0.68420327, 0.82623974, 0.70912897, 0.66280698, 0.60631287, 0.61775646, 0.54565334, 0.52431821, 0.77688667, 0.53243718, 0.45656482, 0.38411009, 0.42749903, 0.66954245, 0.49776812, 0.53883804, 0.56252938])
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- created_at :
- 2024-07-30T11:52:42.044014+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 3kB Dimensions: (date: 179) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 Data variables: y (date) float64 1kB 0.4794 0.4527 0.5374 ... 0.4978 0.5388 0.5625 Attributes: created_at: 2024-07-30T11:52:42.044014+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- date: 179
- channel: 2
- control: 3
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- channel_data(date, channel)float640.3196 0.0 0.1128 ... 0.4403 0.0
array([[3.19648241e-01, 0.00000000e+00], [1.12765324e-01, 0.00000000e+00], [2.93380707e-01, 0.00000000e+00], [7.16379574e-02, 0.00000000e+00], [3.88041940e-01, 0.00000000e+00], [4.73291540e-02, 0.00000000e+00], [4.25671645e-01, 0.00000000e+00], [3.35039834e-01, 8.84759215e-01], [2.53918849e-01, 0.00000000e+00], [9.41199784e-01, 0.00000000e+00], [4.26630818e-01, 0.00000000e+00], [3.64360623e-01, 0.00000000e+00], [4.42975062e-01, 0.00000000e+00], [4.24530352e-01, 9.69641782e-01], [3.29493374e-01, 0.00000000e+00], [9.25031639e-01, 0.00000000e+00], [3.09048312e-01, 0.00000000e+00], [9.12534800e-01, 0.00000000e+00], [2.51539259e-01, 0.00000000e+00], [2.37266186e-01, 0.00000000e+00], ... [1.70332079e-01, 9.38381372e-01], [4.29038699e-01, 9.20516422e-01], [9.13487319e-01, 0.00000000e+00], [1.42944657e-01, 0.00000000e+00], [1.86838303e-01, 8.55514629e-01], [3.14421972e-01, 0.00000000e+00], [4.00678428e-01, 0.00000000e+00], [1.45069138e-01, 0.00000000e+00], [1.48471239e-01, 0.00000000e+00], [7.00777532e-02, 0.00000000e+00], [1.99103276e-01, 0.00000000e+00], [3.62700587e-01, 9.14000224e-01], [2.41143360e-01, 0.00000000e+00], [4.05094103e-02, 0.00000000e+00], [6.76832332e-02, 0.00000000e+00], [3.31349195e-02, 0.00000000e+00], [1.66170470e-01, 8.68233263e-01], [1.72458556e-01, 0.00000000e+00], [2.81197012e-01, 0.00000000e+00], [4.40328682e-01, 0.00000000e+00]])
- control_data(date, control)float640.0 0.0 0.0 0.0 ... 0.0 0.0 178.0
array([[ 0., 0., 0.], [ 0., 0., 1.], [ 0., 0., 2.], [ 0., 0., 3.], [ 0., 0., 4.], [ 0., 0., 5.], [ 0., 0., 6.], [ 0., 0., 7.], [ 0., 0., 8.], [ 0., 0., 9.], [ 0., 0., 10.], [ 0., 0., 11.], [ 0., 0., 12.], [ 0., 0., 13.], [ 0., 0., 14.], [ 0., 0., 15.], [ 0., 0., 16.], [ 0., 0., 17.], [ 0., 0., 18.], [ 0., 0., 19.], ... [ 0., 0., 159.], [ 0., 0., 160.], [ 0., 0., 161.], [ 0., 0., 162.], [ 0., 0., 163.], [ 0., 0., 164.], [ 0., 0., 165.], [ 0., 0., 166.], [ 0., 0., 167.], [ 0., 0., 168.], [ 0., 0., 169.], [ 0., 0., 170.], [ 0., 0., 171.], [ 0., 0., 172.], [ 0., 0., 173.], [ 0., 0., 174.], [ 0., 0., 175.], [ 0., 0., 176.], [ 0., 0., 177.], [ 0., 0., 178.]])
- dayofyear(date)int3292 99 106 113 ... 221 228 235 242
array([ 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242], dtype=int32)
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- created_at :
- 2024-07-30T11:52:42.051294+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 9kB Dimensions: (date: 179, channel: 2, control: 3) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 * channel (channel) <U2 16B 'x1' 'x2' * control (control) <U7 84B 'event_1' 'event_2' 't' Data variables: channel_data (date, channel) float64 3kB 0.3196 0.0 0.1128 ... 0.4403 0.0 control_data (date, control) float64 4kB 0.0 0.0 0.0 0.0 ... 0.0 0.0 178.0 dayofyear (date) int32 716B 92 99 106 113 120 ... 214 221 228 235 242 Attributes: created_at: 2024-07-30T11:52:42.051294+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- index: 179
- index(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- date_week(index)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', ... '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- x1(index)float640.3186 0.1124 ... 0.2803 0.4389
array([3.18580018e-01, 1.12388476e-01, 2.92400266e-01, 7.13985526e-02, 3.86745154e-01, 4.71709861e-02, 4.24249105e-01, 3.33920175e-01, 2.53070285e-01, 9.38054416e-01, 4.25205073e-01, 3.63142977e-01, 4.41494696e-01, 4.23111626e-01, 3.28392249e-01, 9.21940303e-01, 3.08015512e-01, 9.09485226e-01, 2.50698647e-01, 2.36473273e-01, 4.03137932e-01, 1.47177719e-01, 3.63041014e-01, 1.47066490e-01, 9.46704311e-02, 2.59245305e-01, 5.74838249e-02, 2.06465328e-02, 1.65636049e-01, 2.14007141e-01, 3.60517692e-01, 1.22368556e-01, 9.58683953e-01, 3.21972344e-01, 2.53234055e-01, 6.40119796e-02, 2.36553200e-02, 1.83164569e-01, 9.25302245e-01, 9.96658129e-01, 4.01689634e-01, 1.73745461e-01, 9.55372645e-01, 3.55889419e-01, 9.29181335e-04, 4.37815667e-01, 9.73976316e-01, 9.77903945e-01, 2.48141704e-01, 4.05620409e-01, 2.49040963e-01, 5.30524844e-02, 6.63217207e-02, 9.19314691e-02, 2.84652565e-01, 3.73845327e-01, 3.11033721e-01, 1.08200596e-02, 3.25854693e-01, 4.30160827e-01, 4.42189999e-01, 2.68919050e-01, 3.84406892e-01, 3.03780772e-01, 2.22092463e-01, 9.84087017e-01, 1.78161753e-01, 1.52862615e-01, 4.32812209e-01, 3.80735892e-01, 1.33810881e-01, 2.18715931e-01, 3.24034681e-01, 3.66676692e-01, 1.50298760e-01, 9.31123777e-01, 2.99199062e-01, 1.59348190e-01, 4.49282836e-01, 9.18307179e-03, ... 2.83962083e-01, 4.29271667e-01, 1.55574946e-01, 1.07068213e-01, 4.46958034e-01, 3.53012159e-01, 4.05501510e-01, 9.95101996e-01, 1.95552073e-01, 4.21105629e-01, 3.89127721e-02, 2.74762370e-01, 3.88551689e-01, 3.98177912e-01, 9.30166751e-01, 2.59848823e-01, 1.94820914e-01, 2.58231310e-01, 3.02189662e-01, 1.03497234e-01, 8.01700983e-02, 4.15976836e-01, 3.96173495e-01, 4.43288434e-01, 6.38882192e-02, 2.56961240e-01, 4.16716500e-01, 1.89344301e-01, 1.21168779e-02, 3.07204390e-01, 2.79346139e-01, 1.55859670e-01, 2.51259804e-01, 4.15636348e-01, 1.50413447e-01, 4.18457229e-02, 2.92710243e-01, 3.91623929e-01, 9.89705226e-02, 2.68473040e-01, 3.63484578e-01, 1.85363200e-01, 6.59774982e-02, 3.54568453e-01, 1.59422721e-01, 1.81976239e-01, 1.16747054e-01, 3.23780216e-01, 4.34122877e-01, 1.08988007e-01, 1.61353829e-01, 9.42322052e-01, 8.52032642e-02, 3.25819647e-01, 1.67913280e-01, 3.39621958e-01, 2.52901858e-01, 8.64855399e-02, 3.37226955e-01, 1.69762852e-01, 4.27604907e-01, 9.10434562e-01, 1.42466955e-01, 1.86213914e-01, 3.13371214e-01, 3.99339412e-01, 1.44584335e-01, 1.47975068e-01, 6.98435624e-02, 1.98437898e-01, 3.61488489e-01, 2.40337490e-01, 4.03740331e-02, 6.74570446e-02, 3.30241869e-02, 1.65615150e-01, 1.71882222e-01, 2.80257288e-01, 4.38857161e-01])
- x2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0
array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.87978184, 0. , 0. , 0. , 0. , 0. , 0.96418688, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.80062317, 0. , 0. , 0. , 0.8535269 , 0. , 0. , 0.98859712, 0.87047511, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.9748662 , 0. , 0. , 0. , 0.90257287, 0. , 0. , 0. , 0. , 0.99437431, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.95798229, 0. , 0. , 0.88604706, 0.84193305, 0. , 0.91253659, 0. , 0. , 0.99123254, 0. , 0. , 0.95581799, 0.91704461, 0. , 0.80904352, 0. , 0. , 0. , 0.86960149, 0. , 0.9208528 , 0. , 0. , 0. , 0. , 0.99390622, 0. , 0. , 0. , 0. , 0. , 0. , 0.93665676, 0.9093652 , 0. , 0. , 0.80688306, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.89397651, 0.86774976, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.83998152, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.96018382, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.93310233, 0.91533788, 0. , 0. , 0.85070177, 0. , 0. , 0. , 0. , 0. , 0. , 0.90885834, 0. , 0. , 0. , 0. , 0.86334885, 0. , 0. , 0. ])
- event_1(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- event_2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- dayofyear(index)int6492 99 106 113 ... 221 228 235 242
array([ 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242])
- t(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- y(index)float643.985e+03 3.763e+03 ... 4.676e+03
array([3984.66223734, 3762.87179412, 4466.96738844, 3864.21937266, 4441.62527775, 3677.39655018, 5067.54633687, 6079.09904219, 4954.20536859, 5865.67657627, 5096.63305051, 4991.54228314, 4688.5848447 , 6536.34574052, 5030.98358508, 4638.69083472, 4209.54579837, 4876.00838907, 3906.171689 , 3549.86212243, 4025.43395537, 3223.30633321, 4079.65295872, 4156.43557336, 3666.8772267 , 3853.54920598, 3531.47191787, 3538.8824745 , 4261.17449177, 4604.51723377, 6484.97624603, 5090.8724376 , 6500.44070675, 6434.7020032 , 7288.09549867, 5249.09562308, 4284.73710406, 5924.4967947 , 7770.89886433, 6600.77946045, 6003.92292284, 5660.65332884, 5872.74193171, 6093.70178134, 3994.21575864, 4817.41932661, 7795.0978095 , 6447.22166693, 5540.6792271 , 4949.83235925, 6379.8986888 , 4764.01718599, 4207.85140173, 4412.82026656, 4346.99520328, 6626.69831268, 5231.24779003, 3891.28186583, 6815.82014683, 5047.60961099, 5292.31541818, 5238.73239384, 4994.21021861, 4563.9431011 , 4501.26480448, 5634.63844969, 4823.48226687, 4053.07938257, 4489.40147834, 6196.75603817, 3824.9202315 , 3952.72844853, 5958.05509279, 6003.89166699, 4506.60683165, 7107.8687139 , 5686.19380778, 4737.44808553, 7010.95204787, 4830.18985388, ... 4650.33832006, 5271.77236249, 5847.25691642, 6434.12509649, 5835.67243843, 5424.16703016, 6805.503155 , 6808.85054468, 5684.10310247, 5920.17689413, 4508.38691899, 4822.65128872, 5280.52839424, 5215.19196501, 7674.82634251, 7142.73704187, 5179.99140594, 4687.55775271, 4623.09983189, 3538.8645019 , 3580.23476566, 4361.20963926, 4535.40095043, 4376.02791122, 3460.32851473, 4119.38208881, 4450.28600415, 4405.89387854, 6496.50077682, 4442.17560168, 5309.6466714 , 4964.82187487, 4767.04140224, 6007.10694272, 7341.81915474, 5611.66436779, 5675.76416319, 6390.81472343, 5567.94366983, 5850.38866634, 6150.42324303, 5481.44428281, 6971.26166534, 6117.54314155, 4725.84123847, 5163.38572629, 4402.2528145 , 5629.27905386, 5440.85463743, 4747.48354262, 4651.19391143, 5678.17799695, 5327.64323813, 5092.77743153, 4860.96843213, 5312.05880983, 4716.62387739, 4879.90820541, 5246.0963942 , 7059.26575537, 7451.88641636, 7060.8531078 , 5687.37638691, 6868.04144218, 5894.56896391, 5509.52170002, 5039.91969411, 5135.04343508, 4535.6929473 , 4358.34664039, 6457.79858878, 4425.83485865, 3795.15282441, 3192.87959337, 3553.54614781, 5565.50968216, 4137.65148493, 4479.04135141, 4675.97343867])
- indexPandasIndex
PandasIndex(RangeIndex(start=0, stop=179, step=1, name='index'))
<xarray.Dataset> Size: 13kB Dimensions: (index: 179) Coordinates: * index (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 Data variables: date_week (index) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 x1 (index) float64 1kB 0.3186 0.1124 0.2924 ... 0.1719 0.2803 0.4389 x2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.8633 0.0 0.0 0.0 event_1 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 event_2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 dayofyear (index) int64 1kB 92 99 106 113 120 127 ... 214 221 228 235 242 t (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 y (index) float64 1kB 3.985e+03 3.763e+03 ... 4.479e+03 4.676e+03
xarray.Dataset
Saving and loading a fitted model#
All the data passed to the model on initialization is stored in idata.attrs
. This will be used later in the save()
method to convert both this data and all the fit data into the netCDF format. You can read more about this format here.
The save
and load
method only require a path to inform where the model should be saved and loaded from.
mmm.save("my_saved_model.nc")
loaded_model = MMM.load("my_saved_model.nc")
loaded_model.model_config["beta_channel"]
Prior("HalfNormal", sigma=[2.1775326 1.14026088], dims="channel")
loaded_model.idata.attrs
{'id': '5b29012e0af7454c',
'model_type': 'MMM',
'version': '0.0.2',
'sampler_config': '{"tune": 1000, "draws": 1000, "chains": 4, "target_accept": 0.91, "nuts_sampler": "numpyro"}',
'model_config': '{"intercept": {"dist": "Normal", "kwargs": {"mu": 0, "sigma": 2}}, "likelihood": {"dist": "Normal", "kwargs": {"sigma": {"dist": "HalfNormal", "kwargs": {"sigma": 2}}}, "dims": ["date"]}, "gamma_control": {"dist": "Normal", "kwargs": {"mu": 0, "sigma": 2}, "dims": ["control"]}, "gamma_fourier": {"dist": "Laplace", "kwargs": {"mu": 0, "b": 1}, "dims": ["fourier_mode"]}, "adstock_alpha": {"dist": "Beta", "kwargs": {"alpha": 1, "beta": 3}, "dims": ["channel"]}, "saturation_lam": {"dist": "Gamma", "kwargs": {"alpha": 3, "beta": 1}, "dims": ["channel"]}, "saturation_beta": {"dist": "HalfNormal", "kwargs": {"sigma": 2}, "dims": ["channel"]}, "beta_channel": {"dist": "HalfNormal", "kwargs": {"sigma": [2.1775326025486734, 1.140260877391939]}, "dims": ["channel"]}}',
'date_column': '"date_week"',
'adstock': '{"lookup_name": "geometric", "prefix": "adstock", "priors": {"alpha": {"dist": "Beta", "kwargs": {"alpha": 1, "beta": 3}, "dims": ["channel"]}}, "l_max": 8, "normalize": true, "mode": "After"}',
'saturation': '{"lookup_name": "logistic", "prefix": "saturation", "priors": {"lam": {"dist": "Gamma", "kwargs": {"alpha": 3, "beta": 1}, "dims": ["channel"]}, "beta": {"dist": "HalfNormal", "kwargs": {"sigma": 2}, "dims": ["channel"]}}}',
'adstock_first': 'true',
'control_columns': '["event_1", "event_2", "t"]',
'channel_columns': '["x1", "x2"]',
'adstock_max_lag': '8',
'validate_data': 'true',
'yearly_seasonality': '2',
'time_varying_intercept': 'false',
'time_varying_media': 'false'}
loaded_model.graphviz()
loaded_model.idata
-
- chain: 4
- draw: 1000
- channel: 2
- date: 179
- control: 3
- fourier_mode: 4
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- fourier_mode(fourier_mode)<U5'sin_1' 'sin_2' 'cos_1' 'cos_2'
array(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='<U5')
- adstock_alpha(chain, draw, channel)float64...
[8000 values with dtype=float64]
- channel_contributions(chain, draw, date, channel)float64...
[1432000 values with dtype=float64]
- control_contributions(chain, draw, date, control)float64...
[2148000 values with dtype=float64]
- fourier_contributions(chain, draw, date, fourier_mode)float64...
[2864000 values with dtype=float64]
- gamma_control(chain, draw, control)float64...
[12000 values with dtype=float64]
- gamma_fourier(chain, draw, fourier_mode)float64...
[16000 values with dtype=float64]
- intercept(chain, draw)float64...
[4000 values with dtype=float64]
- mu(chain, draw, date)float64...
[716000 values with dtype=float64]
- saturation_beta(chain, draw, channel)float64...
[8000 values with dtype=float64]
- saturation_lam(chain, draw, channel)float64...
[8000 values with dtype=float64]
- y_sigma(chain, draw)float64...
[4000 values with dtype=float64]
- yearly_seasonality_contribution(chain, draw, date)float64...
[716000 values with dtype=float64]
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- fourier_modePandasIndex
PandasIndex(Index(['sin_1', 'sin_2', 'cos_1', 'cos_2'], dtype='object', name='fourier_mode'))
- created_at :
- 2024-07-30T11:52:42.018994+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 63MB Dimensions: (chain: 4, draw: 1000, channel: 2, date: 179, control: 3, fourier_mode: 4) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 ... 997 998 999 * channel (channel) <U2 16B 'x1' 'x2' * date (date) datetime64[ns] 1kB 2018-04-02 ...... * control (control) <U7 84B 'event_1' 'event_2' 't' * fourier_mode (fourier_mode) <U5 80B 'sin_1' ... 'cos_2' Data variables: adstock_alpha (chain, draw, channel) float64 64kB ... channel_contributions (chain, draw, date, channel) float64 11MB ... control_contributions (chain, draw, date, control) float64 17MB ... fourier_contributions (chain, draw, date, fourier_mode) float64 23MB ... gamma_control (chain, draw, control) float64 96kB ... gamma_fourier (chain, draw, fourier_mode) float64 128kB ... intercept (chain, draw) float64 32kB ... mu (chain, draw, date) float64 6MB ... saturation_beta (chain, draw, channel) float64 64kB ... saturation_lam (chain, draw, channel) float64 64kB ... y_sigma (chain, draw) float64 32kB ... yearly_seasonality_contribution (chain, draw, date) float64 6MB ... Attributes: created_at: 2024-07-30T11:52:42.018994+00:00 arviz_version: 0.19.0
xarray.Dataset -
- chain: 4
- draw: 1000
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- acceptance_rate(chain, draw)float64...
[4000 values with dtype=float64]
- diverging(chain, draw)bool...
[4000 values with dtype=bool]
- energy(chain, draw)float64...
[4000 values with dtype=float64]
- lp(chain, draw)float64...
[4000 values with dtype=float64]
- n_steps(chain, draw)int64...
[4000 values with dtype=int64]
- step_size(chain, draw)float64...
[4000 values with dtype=float64]
- tree_depth(chain, draw)int64...
[4000 values with dtype=int64]
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- created_at :
- 2024-07-30T11:52:42.039028+00:00
- arviz_version :
- 0.19.0
<xarray.Dataset> Size: 204kB Dimensions: (chain: 4, draw: 1000) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 ... 994 995 996 997 998 999 Data variables: acceptance_rate (chain, draw) float64 32kB ... diverging (chain, draw) bool 4kB ... energy (chain, draw) float64 32kB ... lp (chain, draw) float64 32kB ... n_steps (chain, draw) int64 32kB ... step_size (chain, draw) float64 32kB ... tree_depth (chain, draw) int64 32kB ... Attributes: created_at: 2024-07-30T11:52:42.039028+00:00 arviz_version: 0.19.0
xarray.Dataset -
- date: 179
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- y(date)float64...
[179 values with dtype=float64]
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- created_at :
- 2024-07-30T11:52:42.044014+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 3kB Dimensions: (date: 179) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 Data variables: y (date) float64 1kB ... Attributes: created_at: 2024-07-30T11:52:42.044014+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- date: 179
- channel: 2
- control: 3
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- channel(channel)<U2'x1' 'x2'
array(['x1', 'x2'], dtype='<U2')
- control(control)<U7'event_1' 'event_2' 't'
array(['event_1', 'event_2', 't'], dtype='<U7')
- channel_data(date, channel)float64...
[358 values with dtype=float64]
- control_data(date, control)float64...
[537 values with dtype=float64]
- dayofyear(date)int32...
[179 values with dtype=int32]
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- channelPandasIndex
PandasIndex(Index(['x1', 'x2'], dtype='object', name='channel'))
- controlPandasIndex
PandasIndex(Index(['event_1', 'event_2', 't'], dtype='object', name='control'))
- created_at :
- 2024-07-30T11:52:42.051294+00:00
- arviz_version :
- 0.19.0
- inference_library :
- numpyro
- inference_library_version :
- 0.15.0
- sampling_time :
- 77.964515
<xarray.Dataset> Size: 9kB Dimensions: (date: 179, channel: 2, control: 3) Coordinates: * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 * channel (channel) <U2 16B 'x1' 'x2' * control (control) <U7 84B 'event_1' 'event_2' 't' Data variables: channel_data (date, channel) float64 3kB ... control_data (date, control) float64 4kB ... dayofyear (date) int32 716B ... Attributes: created_at: 2024-07-30T11:52:42.051294+00:00 arviz_version: 0.19.0 inference_library: numpyro inference_library_version: 0.15.0 sampling_time: 77.964515
xarray.Dataset -
- index: 179
- index(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- date_week(index)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- x1(index)float640.3186 0.1124 ... 0.2803 0.4389
array([3.185800e-01, 1.123885e-01, 2.924003e-01, 7.139855e-02, 3.867452e-01, 4.717099e-02, 4.242491e-01, 3.339202e-01, 2.530703e-01, 9.380544e-01, 4.252051e-01, 3.631430e-01, 4.414947e-01, 4.231116e-01, 3.283922e-01, 9.219403e-01, 3.080155e-01, 9.094852e-01, 2.506986e-01, 2.364733e-01, 4.031379e-01, 1.471777e-01, 3.630410e-01, 1.470665e-01, 9.467043e-02, 2.592453e-01, 5.748382e-02, 2.064653e-02, 1.656360e-01, 2.140071e-01, 3.605177e-01, 1.223686e-01, 9.586840e-01, 3.219723e-01, 2.532341e-01, 6.401198e-02, 2.365532e-02, 1.831646e-01, 9.253022e-01, 9.966581e-01, 4.016896e-01, 1.737455e-01, 9.553726e-01, 3.558894e-01, 9.291813e-04, 4.378157e-01, 9.739763e-01, 9.779039e-01, 2.481417e-01, 4.056204e-01, 2.490410e-01, 5.305248e-02, 6.632172e-02, 9.193147e-02, 2.846526e-01, 3.738453e-01, 3.110337e-01, 1.082006e-02, 3.258547e-01, 4.301608e-01, 4.421900e-01, 2.689191e-01, 3.844069e-01, 3.037808e-01, 2.220925e-01, 9.840870e-01, 1.781618e-01, 1.528626e-01, 4.328122e-01, 3.807359e-01, 1.338109e-01, 2.187159e-01, 3.240347e-01, 3.666767e-01, 1.502988e-01, 9.311238e-01, 2.991991e-01, 1.593482e-01, 4.492828e-01, 9.183072e-03, 2.406173e-01, 3.965522e-02, 6.828151e-02, 2.051752e-01, 4.046401e-01, 4.391195e-01, 2.083842e-01, 3.543588e-02, 9.664747e-01, 3.240292e-01, 4.006693e-01, 1.644249e-01, 2.552044e-01, 3.868456e-01, 4.340460e-01, 2.885776e-01, 3.196821e-01, 2.036868e-01, 3.595476e-01, 2.111223e-02, 2.839621e-01, 4.292717e-01, 1.555749e-01, 1.070682e-01, 4.469580e-01, 3.530122e-01, 4.055015e-01, 9.951020e-01, 1.955521e-01, 4.211056e-01, 3.891277e-02, 2.747624e-01, 3.885517e-01, 3.981779e-01, 9.301668e-01, 2.598488e-01, 1.948209e-01, 2.582313e-01, 3.021897e-01, 1.034972e-01, 8.017010e-02, 4.159768e-01, 3.961735e-01, 4.432884e-01, 6.388822e-02, 2.569612e-01, 4.167165e-01, 1.893443e-01, 1.211688e-02, 3.072044e-01, 2.793461e-01, 1.558597e-01, 2.512598e-01, 4.156363e-01, 1.504134e-01, 4.184572e-02, 2.927102e-01, 3.916239e-01, 9.897052e-02, 2.684730e-01, 3.634846e-01, 1.853632e-01, 6.597750e-02, 3.545685e-01, 1.594227e-01, 1.819762e-01, 1.167471e-01, 3.237802e-01, 4.341229e-01, 1.089880e-01, 1.613538e-01, 9.423221e-01, 8.520326e-02, 3.258196e-01, 1.679133e-01, 3.396220e-01, 2.529019e-01, 8.648554e-02, 3.372270e-01, 1.697629e-01, 4.276049e-01, 9.104346e-01, 1.424670e-01, 1.862139e-01, 3.133712e-01, 3.993394e-01, 1.445843e-01, 1.479751e-01, 6.984356e-02, 1.984379e-01, 3.614885e-01, 2.403375e-01, 4.037403e-02, 6.745704e-02, 3.302419e-02, 1.656152e-01, 1.718822e-01, 2.802573e-01, 4.388572e-01])
- x2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0
array([0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.879782, 0. , 0. , 0. , 0. , 0. , 0.964187, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.800623, 0. , 0. , 0. , 0.853527, 0. , 0. , 0.988597, 0.870475, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.974866, 0. , 0. , 0. , 0.902573, 0. , 0. , 0. , 0. , 0.994374, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.957982, 0. , 0. , 0.886047, 0.841933, 0. , 0.912537, 0. , 0. , 0.991233, 0. , 0. , 0.955818, 0.917045, 0. , 0.809044, 0. , 0. , 0. , 0.869601, 0. , 0.920853, 0. , 0. , 0. , 0. , 0.993906, 0. , 0. , 0. , 0. , 0. , 0. , 0.936657, 0.909365, 0. , 0. , 0.806883, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.893977, 0.86775 , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.839982, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.960184, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0.933102, 0.915338, 0. , 0. , 0.850702, 0. , 0. , 0. , 0. , 0. , 0. , 0.908858, 0. , 0. , 0. , 0. , 0.863349, 0. , 0. , 0. ])
- event_1(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- event_2(index)float640.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
- dayofyear(index)int6492 99 106 113 ... 221 228 235 242
array([ 92, 99, 106, 113, 120, 127, 134, 141, 148, 155, 162, 169, 176, 183, 190, 197, 204, 211, 218, 225, 232, 239, 246, 253, 260, 267, 274, 281, 288, 295, 302, 309, 316, 323, 330, 337, 344, 351, 358, 365, 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343, 350, 357, 364, 6, 13, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 97, 104, 111, 118, 125, 132, 139, 146, 153, 160, 167, 174, 181, 188, 195, 202, 209, 216, 223, 230, 237, 244, 251, 258, 265, 272, 279, 286, 293, 300, 307, 314, 321, 328, 335, 342, 349, 356, 363, 4, 11, 18, 25, 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102, 109, 116, 123, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242])
- t(index)int640 1 2 3 4 5 ... 174 175 176 177 178
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178])
- y(index)float643.985e+03 3.763e+03 ... 4.676e+03
array([3984.662237, 3762.871794, 4466.967388, 3864.219373, 4441.625278, 3677.39655 , 5067.546337, 6079.099042, 4954.205369, 5865.676576, 5096.633051, 4991.542283, 4688.584845, 6536.345741, 5030.983585, 4638.690835, 4209.545798, 4876.008389, 3906.171689, 3549.862122, 4025.433955, 3223.306333, 4079.652959, 4156.435573, 3666.877227, 3853.549206, 3531.471918, 3538.882474, 4261.174492, 4604.517234, 6484.976246, 5090.872438, 6500.440707, 6434.702003, 7288.095499, 5249.095623, 4284.737104, 5924.496795, 7770.898864, 6600.77946 , 6003.922923, 5660.653329, 5872.741932, 6093.701781, 3994.215759, 4817.419327, 7795.097809, 6447.221667, 5540.679227, 4949.832359, 6379.898689, 4764.017186, 4207.851402, 4412.820267, 4346.995203, 6626.698313, 5231.24779 , 3891.281866, 6815.820147, 5047.609611, 5292.315418, 5238.732394, 4994.210219, 4563.943101, 4501.264804, 5634.63845 , 4823.482267, 4053.079383, 4489.401478, 6196.756038, 3824.920232, 3952.728449, 5958.055093, 6003.891667, 4506.606832, 7107.868714, 5686.193808, 4737.448086, 7010.952048, 4830.189854, 4771.36246 , 5998.830148, 5829.018189, 5882.675999, 7470.547013, 6745.587701, 5989.886239, 4756.549762, 8312.407544, 6954.851763, 8250.292341, 5836.582431, 5742.57082 , 5918.941634, 5338.1905 , 6815.637385, 5733.020944, 4953.495336, 5368.254186, 4222.099205, 4650.33832 , 5271.772362, 5847.256916, 6434.125096, 5835.672438, 5424.16703 , 6805.503155, 6808.850545, 5684.103102, 5920.176894, 4508.386919, 4822.651289, 5280.528394, 5215.191965, 7674.826343, 7142.737042, 5179.991406, 4687.557753, 4623.099832, 3538.864502, 3580.234766, 4361.209639, 4535.40095 , 4376.027911, 3460.328515, 4119.382089, 4450.286004, 4405.893879, 6496.500777, 4442.175602, 5309.646671, 4964.821875, 4767.041402, 6007.106943, 7341.819155, 5611.664368, 5675.764163, 6390.814723, 5567.94367 , 5850.388666, 6150.423243, 5481.444283, 6971.261665, 6117.543142, 4725.841238, 5163.385726, 4402.252814, 5629.279054, 5440.854637, 4747.483543, 4651.193911, 5678.177997, 5327.643238, 5092.777432, 4860.968432, 5312.05881 , 4716.623877, 4879.908205, 5246.096394, 7059.265755, 7451.886416, 7060.853108, 5687.376387, 6868.041442, 5894.568964, 5509.5217 , 5039.919694, 5135.043435, 4535.692947, 4358.34664 , 6457.798589, 4425.834859, 3795.152824, 3192.879593, 3553.546148, 5565.509682, 4137.651485, 4479.041351, 4675.973439])
- indexPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 169, 170, 171, 172, 173, 174, 175, 176, 177, 178], dtype='int64', name='index', length=179))
<xarray.Dataset> Size: 13kB Dimensions: (index: 179) Coordinates: * index (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 Data variables: date_week (index) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 x1 (index) float64 1kB 0.3186 0.1124 0.2924 ... 0.1719 0.2803 0.4389 x2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.8633 0.0 0.0 0.0 event_1 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 event_2 (index) float64 1kB 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 dayofyear (index) int64 1kB 92 99 106 113 120 127 ... 214 221 228 235 242 t (index) int64 1kB 0 1 2 3 4 5 6 7 ... 172 173 174 175 176 177 178 y (index) float64 1kB 3.985e+03 3.763e+03 ... 4.479e+03 4.676e+03
xarray.Dataset
A loaded model is ready to be used for sampling and prediction, making use of the previous fitting results and data if needed.
loaded_model.sample_posterior_predictive(
X, extend_idata=True, combined=False, random_seed=rng
)
Sampling: [y]
<xarray.Dataset> Size: 6MB Dimensions: (chain: 4, draw: 1000, date: 179) Coordinates: * chain (chain) int64 32B 0 1 2 3 * draw (draw) int64 8kB 0 1 2 3 4 5 6 7 ... 993 994 995 996 997 998 999 * date (date) datetime64[ns] 1kB 2018-04-02 2018-04-09 ... 2021-08-30 Data variables: y (chain, draw, date) float64 6MB 3.984e+03 3.789e+03 ... 4.958e+03 Attributes: created_at: 2024-07-30T11:52:49.655223+00:00 arviz_version: 0.19.0 inference_library: pymc inference_library_version: 5.15.1
- chain: 4
- draw: 1000
- date: 179
- chain(chain)int640 1 2 3
array([0, 1, 2, 3])
- draw(draw)int640 1 2 3 4 5 ... 995 996 997 998 999
array([ 0, 1, 2, ..., 997, 998, 999])
- date(date)datetime64[ns]2018-04-02 ... 2021-08-30
array(['2018-04-02T00:00:00.000000000', '2018-04-09T00:00:00.000000000', '2018-04-16T00:00:00.000000000', '2018-04-23T00:00:00.000000000', '2018-04-30T00:00:00.000000000', '2018-05-07T00:00:00.000000000', '2018-05-14T00:00:00.000000000', '2018-05-21T00:00:00.000000000', '2018-05-28T00:00:00.000000000', '2018-06-04T00:00:00.000000000', '2018-06-11T00:00:00.000000000', '2018-06-18T00:00:00.000000000', '2018-06-25T00:00:00.000000000', '2018-07-02T00:00:00.000000000', '2018-07-09T00:00:00.000000000', '2018-07-16T00:00:00.000000000', '2018-07-23T00:00:00.000000000', '2018-07-30T00:00:00.000000000', '2018-08-06T00:00:00.000000000', '2018-08-13T00:00:00.000000000', '2018-08-20T00:00:00.000000000', '2018-08-27T00:00:00.000000000', '2018-09-03T00:00:00.000000000', '2018-09-10T00:00:00.000000000', '2018-09-17T00:00:00.000000000', '2018-09-24T00:00:00.000000000', '2018-10-01T00:00:00.000000000', '2018-10-08T00:00:00.000000000', '2018-10-15T00:00:00.000000000', '2018-10-22T00:00:00.000000000', '2018-10-29T00:00:00.000000000', '2018-11-05T00:00:00.000000000', '2018-11-12T00:00:00.000000000', '2018-11-19T00:00:00.000000000', '2018-11-26T00:00:00.000000000', '2018-12-03T00:00:00.000000000', '2018-12-10T00:00:00.000000000', '2018-12-17T00:00:00.000000000', '2018-12-24T00:00:00.000000000', '2018-12-31T00:00:00.000000000', '2019-01-07T00:00:00.000000000', '2019-01-14T00:00:00.000000000', '2019-01-21T00:00:00.000000000', '2019-01-28T00:00:00.000000000', '2019-02-04T00:00:00.000000000', '2019-02-11T00:00:00.000000000', '2019-02-18T00:00:00.000000000', '2019-02-25T00:00:00.000000000', '2019-03-04T00:00:00.000000000', '2019-03-11T00:00:00.000000000', '2019-03-18T00:00:00.000000000', '2019-03-25T00:00:00.000000000', '2019-04-01T00:00:00.000000000', '2019-04-08T00:00:00.000000000', '2019-04-15T00:00:00.000000000', '2019-04-22T00:00:00.000000000', '2019-04-29T00:00:00.000000000', '2019-05-06T00:00:00.000000000', '2019-05-13T00:00:00.000000000', '2019-05-20T00:00:00.000000000', '2019-05-27T00:00:00.000000000', '2019-06-03T00:00:00.000000000', '2019-06-10T00:00:00.000000000', '2019-06-17T00:00:00.000000000', '2019-06-24T00:00:00.000000000', '2019-07-01T00:00:00.000000000', '2019-07-08T00:00:00.000000000', '2019-07-15T00:00:00.000000000', '2019-07-22T00:00:00.000000000', '2019-07-29T00:00:00.000000000', '2019-08-05T00:00:00.000000000', '2019-08-12T00:00:00.000000000', '2019-08-19T00:00:00.000000000', '2019-08-26T00:00:00.000000000', '2019-09-02T00:00:00.000000000', '2019-09-09T00:00:00.000000000', '2019-09-16T00:00:00.000000000', '2019-09-23T00:00:00.000000000', '2019-09-30T00:00:00.000000000', '2019-10-07T00:00:00.000000000', '2019-10-14T00:00:00.000000000', '2019-10-21T00:00:00.000000000', '2019-10-28T00:00:00.000000000', '2019-11-04T00:00:00.000000000', '2019-11-11T00:00:00.000000000', '2019-11-18T00:00:00.000000000', '2019-11-25T00:00:00.000000000', '2019-12-02T00:00:00.000000000', '2019-12-09T00:00:00.000000000', '2019-12-16T00:00:00.000000000', '2019-12-23T00:00:00.000000000', '2019-12-30T00:00:00.000000000', '2020-01-06T00:00:00.000000000', '2020-01-13T00:00:00.000000000', '2020-01-20T00:00:00.000000000', '2020-01-27T00:00:00.000000000', '2020-02-03T00:00:00.000000000', '2020-02-10T00:00:00.000000000', '2020-02-17T00:00:00.000000000', '2020-02-24T00:00:00.000000000', '2020-03-02T00:00:00.000000000', '2020-03-09T00:00:00.000000000', '2020-03-16T00:00:00.000000000', '2020-03-23T00:00:00.000000000', '2020-03-30T00:00:00.000000000', '2020-04-06T00:00:00.000000000', '2020-04-13T00:00:00.000000000', '2020-04-20T00:00:00.000000000', '2020-04-27T00:00:00.000000000', '2020-05-04T00:00:00.000000000', '2020-05-11T00:00:00.000000000', '2020-05-18T00:00:00.000000000', '2020-05-25T00:00:00.000000000', '2020-06-01T00:00:00.000000000', '2020-06-08T00:00:00.000000000', '2020-06-15T00:00:00.000000000', '2020-06-22T00:00:00.000000000', '2020-06-29T00:00:00.000000000', '2020-07-06T00:00:00.000000000', '2020-07-13T00:00:00.000000000', '2020-07-20T00:00:00.000000000', '2020-07-27T00:00:00.000000000', '2020-08-03T00:00:00.000000000', '2020-08-10T00:00:00.000000000', '2020-08-17T00:00:00.000000000', '2020-08-24T00:00:00.000000000', '2020-08-31T00:00:00.000000000', '2020-09-07T00:00:00.000000000', '2020-09-14T00:00:00.000000000', '2020-09-21T00:00:00.000000000', '2020-09-28T00:00:00.000000000', '2020-10-05T00:00:00.000000000', '2020-10-12T00:00:00.000000000', '2020-10-19T00:00:00.000000000', '2020-10-26T00:00:00.000000000', '2020-11-02T00:00:00.000000000', '2020-11-09T00:00:00.000000000', '2020-11-16T00:00:00.000000000', '2020-11-23T00:00:00.000000000', '2020-11-30T00:00:00.000000000', '2020-12-07T00:00:00.000000000', '2020-12-14T00:00:00.000000000', '2020-12-21T00:00:00.000000000', '2020-12-28T00:00:00.000000000', '2021-01-04T00:00:00.000000000', '2021-01-11T00:00:00.000000000', '2021-01-18T00:00:00.000000000', '2021-01-25T00:00:00.000000000', '2021-02-01T00:00:00.000000000', '2021-02-08T00:00:00.000000000', '2021-02-15T00:00:00.000000000', '2021-02-22T00:00:00.000000000', '2021-03-01T00:00:00.000000000', '2021-03-08T00:00:00.000000000', '2021-03-15T00:00:00.000000000', '2021-03-22T00:00:00.000000000', '2021-03-29T00:00:00.000000000', '2021-04-05T00:00:00.000000000', '2021-04-12T00:00:00.000000000', '2021-04-19T00:00:00.000000000', '2021-04-26T00:00:00.000000000', '2021-05-03T00:00:00.000000000', '2021-05-10T00:00:00.000000000', '2021-05-17T00:00:00.000000000', '2021-05-24T00:00:00.000000000', '2021-05-31T00:00:00.000000000', '2021-06-07T00:00:00.000000000', '2021-06-14T00:00:00.000000000', '2021-06-21T00:00:00.000000000', '2021-06-28T00:00:00.000000000', '2021-07-05T00:00:00.000000000', '2021-07-12T00:00:00.000000000', '2021-07-19T00:00:00.000000000', '2021-07-26T00:00:00.000000000', '2021-08-02T00:00:00.000000000', '2021-08-09T00:00:00.000000000', '2021-08-16T00:00:00.000000000', '2021-08-23T00:00:00.000000000', '2021-08-30T00:00:00.000000000'], dtype='datetime64[ns]')
- y(chain, draw, date)float643.984e+03 3.789e+03 ... 4.958e+03
array([[[3983.51134605, 3788.60587322, 4132.43532189, ..., 4201.00417703, 4230.4351876 , 4930.64500053], [4105.31232394, 3409.57860423, 4561.80210844, ..., 4324.03002791, 4314.11028728, 4386.83883618], [3849.55887906, 3879.09711873, 4170.53588362, ..., 4539.26788243, 4389.08324375, 4850.88276426], ..., [3888.61679305, 3899.94892909, 4364.33627224, ..., 4430.12294928, 4617.70942893, 5195.04993124], [4146.40591073, 3741.35350089, 4116.69757935, ..., 4520.37819426, 4325.88446899, 5152.83531166], [3778.76047859, 4046.8291519 , 4733.36254355, ..., 4155.87065037, 4227.70657502, 4862.40298478]], [[4255.61237596, 3254.25405043, 4008.68219596, ..., 4362.65240791, 4467.44503002, 5676.92369655], [3552.8542124 , 3552.25509702, 4470.98415603, ..., 4668.71557422, 4604.21999326, 4940.11069627], [3757.03163409, 4296.96330495, 4213.84481503, ..., 3913.87836244, 3940.74162417, 4706.70528386], ... [3774.10056495, 3759.18446364, 4091.02992589, ..., 4237.40391149, 4694.03838475, 4754.69894847], [3885.4915347 , 3456.05238801, 4409.08714276, ..., 3968.83389624, 4366.77631461, 5034.77165863], [4057.02659592, 4190.92964108, 4886.9008339 , ..., 4464.52578936, 4564.45869753, 4947.04236417]], [[4140.97513477, 3893.46576292, 4540.13041197, ..., 3937.75021512, 3949.31038386, 4681.81294575], [4310.79425496, 3750.05496212, 4106.73491839, ..., 4421.61823988, 4133.3675207 , 5022.53706061], [4415.89149626, 3751.17430948, 4516.68027873, ..., 4261.00895058, 4871.68492547, 5785.26746067], ..., [4407.86036734, 3908.74253883, 4610.19818254, ..., 4283.53089546, 4366.85223421, 4943.94954866], [4414.54310961, 3713.11315481, 4053.33471749, ..., 4501.35354369, 4335.53670885, 5275.36239322], [3885.2572419 , 3999.34069299, 4921.42113812, ..., 4774.65935254, 4186.97147374, 4957.63270607]]])
- chainPandasIndex
PandasIndex(Index([0, 1, 2, 3], dtype='int64', name='chain'))
- drawPandasIndex
PandasIndex(Index([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 990, 991, 992, 993, 994, 995, 996, 997, 998, 999], dtype='int64', name='draw', length=1000))
- datePandasIndex
PandasIndex(DatetimeIndex(['2018-04-02', '2018-04-09', '2018-04-16', '2018-04-23', '2018-04-30', '2018-05-07', '2018-05-14', '2018-05-21', '2018-05-28', '2018-06-04', ... '2021-06-28', '2021-07-05', '2021-07-12', '2021-07-19', '2021-07-26', '2021-08-02', '2021-08-09', '2021-08-16', '2021-08-23', '2021-08-30'], dtype='datetime64[ns]', name='date', length=179, freq=None))
- created_at :
- 2024-07-30T11:52:49.655223+00:00
- arviz_version :
- 0.19.0
- inference_library :
- pymc
- inference_library_version :
- 5.15.1
az.plot_ppc(loaded_model.idata)
/home/wdean/micromamba/envs/pymc-marketing-dev/lib/python3.10/site-packages/arviz/stats/density_utils.py:488: UserWarning: Your data appears to have a single value or no finite values
warnings.warn("Your data appears to have a single value or no finite values")
<Axes: xlabel='y'>

Other models#
Even though this introduction is using MMM
, all other PyMC-Marketing models (MMM and CLV) provide these functionalities as well.
Summary#
The PyMC-Marketing functionalities described here are intended to facilitate model sharing among data science teams without demanding extensive modelling technical knowledge for everyone involved. We are still iterating on our API and would love to hear more feedback from our users!
%load_ext watermark
%watermark -n -u -v -iv -w -p pytensor
Last updated: Tue Jul 30 2024
Python implementation: CPython
Python version : 3.10.14
IPython version : 8.26.0
pytensor: 2.22.1
numpy : 1.26.4
arviz : 0.19.0
matplotlib : 3.8.4
pandas : 2.2.2
pymc_marketing: 0.7.0
Watermark: 2.4.3