CLVModel#
- class pymc_marketing.clv.models.basic.CLVModel(data, *, model_config=None, sampler_config=None, non_distributions=None)[source]#
CLV Model base class.
Methods
CLVModel.__init__(data, *[, model_config, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
CLVModel.build_model(X, y, **kwargs)Create an instance of
pm.Modelbased on provided data and model_config.Create attributes for the inference data.
CLVModel.fit([fit_method])Infer model posterior.
CLVModel.fit_summary(**kwargs)Compute the summary of the fit result.
CLVModel.get_params([deep])Get all the model parameters needed to instantiate a copy of the model, not including training data.
CLVModel.load(fname)Create a ModelBuilder instance from a file.
CLVModel.predict(X_pred[, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
CLVModel.predict_posterior(X_pred[, ...])Generate posterior predictive samples on unseen data.
CLVModel.predict_proba(X_pred[, ...])Alias for
predict_posterior, for consistency with scikit-learn probabilistic estimators.Sample from the model's posterior predictive distribution.
CLVModel.sample_prior_predictive(X_pred[, ...])Sample from the model's prior predictive distribution.
CLVModel.save(fname)Save the model's inference data to a file.
CLVModel.set_idata_attrs([idata])Set attributes on an InferenceData object.
CLVModel.set_params(**params)Set all the model parameters needed to instantiate the model, not including training data.
CLVModel.thin_fit_result(keep_every)Return a copy of the model with a thinned fit result.
Attributes
Xdefault_model_configReturn a class default configuration dictionary.
default_sampler_configDefault sampler configuration.
fit_resultGet the fit result.
idGenerate a unique hash value for the model.
output_varOutput variable of the model.
versiony