ModelBuilder#
- class pymc_marketing.model_builder.ModelBuilder(model_config=None, sampler_config=None)[source]#
Base class for building models with PyMC Marketing.
It provides an easy-to-use API (similar to scikit-learn) for models and help with deployment.
Methods
ModelBuilder.__init__
([model_config, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
ModelBuilder.build_model
(X, y, **kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create attributes for the inference data.
ModelBuilder.fit
(X[, y, progressbar, ...])Fit a model using the data passed as a parameter.
ModelBuilder.get_params
([deep])Get all the model parameters needed to instantiate a copy of the model, not including training data.
ModelBuilder.load
(fname)Create a ModelBuilder instance from a file.
ModelBuilder.predict
(X_pred[, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
ModelBuilder.predict_posterior
(X_pred[, ...])Generate posterior predictive samples on unseen data.
ModelBuilder.predict_proba
(X_pred[, ...])Alias for
predict_posterior
, for consistency with scikit-learn probabilistic estimators.Sample from the model's posterior predictive distribution.
Sample from the model's prior predictive distribution.
ModelBuilder.save
(fname)Save the model's inference data to a file.
ModelBuilder.set_idata_attrs
([idata])Set attributes on an InferenceData object.
ModelBuilder.set_params
(**params)Set all the model parameters needed to instantiate the model, not including training data.
Attributes
X
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Return a class default sampler configuration dictionary.
id
Generate a unique hash value for the model.
output_var
Returns the name of the output variable of the model.
version
y