BudgetOptimizer#

class pymc_marketing.mmm.budget_optimizer.BudgetOptimizer(**data)[source]#

A class for optimizing budget allocation in a marketing mix model.

The goal of this optimization is to maximize the total expected response by allocating the given budget across different marketing channels. The optimization is performed using the Sequential Least Squares Quadratic Programming (SLSQP) method, which is a gradient-based optimization algorithm suitable for solving constrained optimization problems.

For more information on the SLSQP algorithm, refer to the documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Parameters:
adstockAdstockTransformation

The adstock class.

saturationSaturationTransformation

The saturation class.

num_periodsint

The number of time units.

parametersdict

A dictionary of parameters for each channel.

adstock_firstbool, optional

Whether to apply adstock transformation first or saturation transformation first. Default is True.

Methods

BudgetOptimizer.__init__(**data)

Create a new model by parsing and validating input data from keyword arguments.

BudgetOptimizer.allocate_budget(total_budget)

Allocate the budget based on the total budget, budget bounds, and custom constraints.

BudgetOptimizer.construct([_fields_set])

BudgetOptimizer.copy(*[, include, exclude, ...])

Returns a copy of the model.

BudgetOptimizer.dict(*[, include, exclude, ...])

BudgetOptimizer.from_orm(obj)

BudgetOptimizer.json(*[, include, exclude, ...])

BudgetOptimizer.model_construct([_fields_set])

Creates a new instance of the Model class with validated data.

BudgetOptimizer.model_copy(*[, update, deep])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#model_copy

BudgetOptimizer.model_dump(*[, mode, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump

BudgetOptimizer.model_dump_json(*[, indent, ...])

Usage docs: https://docs.pydantic.dev/2.9/concepts/serialization/#modelmodel_dump_json

BudgetOptimizer.model_json_schema([...])

Generates a JSON schema for a model class.

BudgetOptimizer.model_parametrized_name(params)

Compute the class name for parametrizations of generic classes.

BudgetOptimizer.model_post_init(...)

Override this method to perform additional initialization after __init__ and model_construct.

BudgetOptimizer.model_rebuild(*[, force, ...])

Try to rebuild the pydantic-core schema for the model.

BudgetOptimizer.model_validate(obj, *[, ...])

Validate a pydantic model instance.

BudgetOptimizer.model_validate_json(json_data, *)

Usage docs: https://docs.pydantic.dev/2.9/concepts/json/#json-parsing

BudgetOptimizer.model_validate_strings(obj, *)

Validate the given object with string data against the Pydantic model.

BudgetOptimizer.objective(budgets)

Calculate the total response during a period of time given the budgets.

BudgetOptimizer.parse_file(path, *[, ...])

BudgetOptimizer.parse_obj(obj)

BudgetOptimizer.parse_raw(b, *[, ...])

BudgetOptimizer.schema([by_alias, ref_template])

BudgetOptimizer.schema_json(*[, by_alias, ...])

BudgetOptimizer.update_forward_refs(**localns)

BudgetOptimizer.validate(value)

Attributes

model_computed_fields

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_extra

Get extra fields set during validation.

model_fields

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo] objects.

model_fields_set

Returns the set of fields that have been explicitly set on this model instance.

adstock

saturation

num_periods

parameters

scales

adstock_first