BaseGammaGammaModel.sample_posterior_predictive#
- BaseGammaGammaModel.sample_posterior_predictive(X_pred, extend_idata=True, combined=True, **sample_posterior_predictive_kwargs)#
Sample from the model’s posterior predictive distribution.
- Parameters:
- X_pred
array,shape(n_pred,n_features) The input data used for prediction using prior distribution..
- extend_idata
Boolean Determine whether the predictions should be added to inference data object. Defaults to True.
- combined: Boolean
Combine chain and draw dims into sample. Won’t work if a dim named sample already exists. Defaults to True.
- **sample_posterior_predictive_kwargs: Additional arguments to pass to pymc.sample_posterior_predictive
- X_pred
- Returns:
- posterior_predictive_samples
DataArray,shape(n_pred,samples) Posterior predictive samples for each input X_pred
- posterior_predictive_samples